Көбейткіштерге жіктеу
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
Есептеу
20x^{4}+31x^{2}-9
Граф
Ортақ пайдалану
Алмасу буферіне көшірілген
20x^{4}+31x^{2}-9=0
Өрнекті көбейткіштерге жіктеу үшін, өрнек 0 мәніне тең болатын теңдеуді шешіңіз.
±\frac{9}{20},±\frac{9}{10},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{20},±\frac{3}{10},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{20},±\frac{1}{10},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі -9 бос мүшесін, ал q өрнегі 20 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=\frac{1}{2}
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
10x^{3}+5x^{2}+18x+9=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. 10x^{3}+5x^{2}+18x+9 нәтижесін алу үшін, 20x^{4}+31x^{2}-9 мәнін 2\left(x-\frac{1}{2}\right)=2x-1 мәніне бөліңіз. Нәтижені көбейткіштерге жіктеу үшін, нәтиже 0 мәніне тең болатын теңдеуді шешіңіз.
±\frac{9}{10},±\frac{9}{5},±\frac{9}{2},±9,±\frac{3}{10},±\frac{3}{5},±\frac{3}{2},±3,±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
Рационал түбір теоремасы бойынша көпмүшедегі барлық рационал түбірлер \frac{p}{q} формасында беріледі, мұндағы p өрнегі 9 бос мүшесін, ал q өрнегі 10 бас коэффициентін бөледі. Барлық үміткерлер тізімі \frac{p}{q}.
x=-\frac{1}{2}
Модуль бойынша ең кіші мәннен бастап, барлық бүтін санды мәндерді қолданып, осындай бір түбірді табыңыз. Егер бүтін санды түбірлер табылмаса, бөлшектік мәндерді қолданып көріңіз.
5x^{2}+9=0
Безу теоремасы бойынша x-k мәні әр k түбірі үшін көпмүше коэффициенті болып табылады. 5x^{2}+9 нәтижесін алу үшін, 10x^{3}+5x^{2}+18x+9 мәнін 2\left(x+\frac{1}{2}\right)=2x+1 мәніне бөліңіз. Нәтижені көбейткіштерге жіктеу үшін, нәтиже 0 мәніне тең болатын теңдеуді шешіңіз.
x=\frac{0±\sqrt{0^{2}-4\times 5\times 9}}{2\times 5}
ax^{2}+bx+c=0 үлгісіндегі барлық теңдеулерді квадраттық формула арқылы шешуге болады: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Квадраттық формуладағы 5 мәнін a мәніне, 0 мәнін b мәніне және 9 мәнін c мәніне ауыстырыңыз.
x=\frac{0±\sqrt{-180}}{10}
Есептеңіз.
5x^{2}+9
5x^{2}+9 көпмүшесінде ешқандай рационал түбірлер жоқ болғандықтан, көбейткіштерге жіктелмейді.
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
Алынған түбірлерді пайдаланып, көбейткішке жіктелген өрнекті қайта жазыңыз.
Мысалдар
Төрттік теңдеу
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Сызықтық теңдеу
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Бір мезгілде теңдеу
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференциация
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Біріктіру
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Шектер
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}