მთავარ კონტენტზე გადასვლა
ამოხსნა z-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

±8,±4,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-8 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
z=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
z^{2}+4z+8=0
ბეზუს თეორემის მიხედვით, z-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით z^{3}+3z^{2}+4z-8 z-1-ზე z^{2}+4z+8-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
z=\frac{-4±\sqrt{4^{2}-4\times 1\times 8}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 4 b-თვის და 8 c-თვის კვადრატულ ფორმულაში.
z=\frac{-4±\sqrt{-16}}{2}
შეასრულეთ გამოთვლები.
z\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
z=1
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.