ამოხსნა a-ისთვის (complex solution)
\left\{\begin{matrix}a=-\frac{3x-y-1}{\left(x-1\right)^{2}}\text{, }&x\neq 1\\a\in \mathrm{C}\text{, }&y=2\text{ and }x=1\end{matrix}\right.
ამოხსნა a-ისთვის
\left\{\begin{matrix}a=-\frac{3x-y-1}{\left(x-1\right)^{2}}\text{, }&x\neq 1\\a\in \mathrm{R}\text{, }&y=2\text{ and }x=1\end{matrix}\right.
ამოხსნა x-ისთვის (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4ay-8a+9}+2a-3}{2a}\text{; }x=\frac{-\sqrt{4ay-8a+9}+2a-3}{2a}\text{, }&a\neq 0\\x=\frac{y+1}{3}\text{, }&a=0\end{matrix}\right.
ამოხსნა x-ისთვის
\left\{\begin{matrix}x=\frac{\sqrt{4ay-8a+9}+2a-3}{2a}\text{; }x=\frac{-\sqrt{4ay-8a+9}+2a-3}{2a}\text{, }&\left(a>0\text{ or }y\leq 2-\frac{9}{4a}\right)\text{ and }\left(y\leq \text{Indeterminate}\text{ or }a\neq 0\right)\text{ and }\left(a<0\text{ or }\left(a\neq 0\text{ and }y\geq 2-\frac{9}{4a}\right)\right)\\x=\frac{y+1}{3}\text{, }&a=0\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
y=ax^{2}-\left(2ax-3x\right)+a-1
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 2a-3 x-ზე.
y=ax^{2}-2ax+3x+a-1
2ax-3x-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
ax^{2}-2ax+3x+a-1=y
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
ax^{2}-2ax+a-1=y-3x
გამოაკელით 3x ორივე მხარეს.
ax^{2}-2ax+a=y-3x+1
დაამატეთ 1 ორივე მხარეს.
\left(x^{2}-2x+1\right)a=y-3x+1
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: a.
\left(x^{2}-2x+1\right)a=1+y-3x
განტოლება სტანდარტული ფორმისაა.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{1+y-3x}{x^{2}-2x+1}
ორივე მხარე გაყავით x^{2}-2x+1-ზე.
a=\frac{1+y-3x}{x^{2}-2x+1}
x^{2}-2x+1-ზე გაყოფა აუქმებს x^{2}-2x+1-ზე გამრავლებას.
a=\frac{1+y-3x}{\left(x-1\right)^{2}}
გაყავით y-3x+1 x^{2}-2x+1-ზე.
y=ax^{2}-\left(2ax-3x\right)+a-1
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 2a-3 x-ზე.
y=ax^{2}-2ax+3x+a-1
2ax-3x-ის საპირისპირო მნიშვნელობის პოვნისთვის, იპოვეთ იგი ყოველი წევრისთვის.
ax^{2}-2ax+3x+a-1=y
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
ax^{2}-2ax+a-1=y-3x
გამოაკელით 3x ორივე მხარეს.
ax^{2}-2ax+a=y-3x+1
დაამატეთ 1 ორივე მხარეს.
\left(x^{2}-2x+1\right)a=y-3x+1
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: a.
\left(x^{2}-2x+1\right)a=1+y-3x
განტოლება სტანდარტული ფორმისაა.
\frac{\left(x^{2}-2x+1\right)a}{x^{2}-2x+1}=\frac{1+y-3x}{x^{2}-2x+1}
ორივე მხარე გაყავით x^{2}-2x+1-ზე.
a=\frac{1+y-3x}{x^{2}-2x+1}
x^{2}-2x+1-ზე გაყოფა აუქმებს x^{2}-2x+1-ზე გამრავლებას.
a=\frac{1+y-3x}{\left(x-1\right)^{2}}
გაყავით y-3x+1 x^{2}-2x+1-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}