მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-3x^{2}=5x
გამოაკელით 3x^{2} ორივე მხარეს.
x-3x^{2}-5x=0
გამოაკელით 5x ორივე მხარეს.
-4x-3x^{2}=0
დააჯგუფეთ x და -5x, რათა მიიღოთ -4x.
x\left(-4-3x\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=-\frac{4}{3}
განტოლების პასუხების მისაღებად ამოხსენით x=0 და -4-3x=0.
x-3x^{2}=5x
გამოაკელით 3x^{2} ორივე მხარეს.
x-3x^{2}-5x=0
გამოაკელით 5x ორივე მხარეს.
-4x-3x^{2}=0
დააჯგუფეთ x და -5x, რათა მიიღოთ -4x.
-3x^{2}-4x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\left(-3\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -3-ით a, -4-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\left(-3\right)}
აიღეთ \left(-4\right)^{2}-ის კვადრატული ფესვი.
x=\frac{4±4}{2\left(-3\right)}
-4-ის საპირისპიროა 4.
x=\frac{4±4}{-6}
გაამრავლეთ 2-ზე -3.
x=\frac{8}{-6}
ახლა ამოხსენით განტოლება x=\frac{4±4}{-6} როცა ± პლიუსია. მიუმატეთ 4 4-ს.
x=-\frac{4}{3}
შეამცირეთ წილადი \frac{8}{-6} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=\frac{0}{-6}
ახლა ამოხსენით განტოლება x=\frac{4±4}{-6} როცა ± მინუსია. გამოაკელით 4 4-ს.
x=0
გაყავით 0 -6-ზე.
x=-\frac{4}{3} x=0
განტოლება ახლა ამოხსნილია.
x-3x^{2}=5x
გამოაკელით 3x^{2} ორივე მხარეს.
x-3x^{2}-5x=0
გამოაკელით 5x ორივე მხარეს.
-4x-3x^{2}=0
დააჯგუფეთ x და -5x, რათა მიიღოთ -4x.
-3x^{2}-4x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{-3x^{2}-4x}{-3}=\frac{0}{-3}
ორივე მხარე გაყავით -3-ზე.
x^{2}+\left(-\frac{4}{-3}\right)x=\frac{0}{-3}
-3-ზე გაყოფა აუქმებს -3-ზე გამრავლებას.
x^{2}+\frac{4}{3}x=\frac{0}{-3}
გაყავით -4 -3-ზე.
x^{2}+\frac{4}{3}x=0
გაყავით 0 -3-ზე.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=\left(\frac{2}{3}\right)^{2}
გაყავით \frac{4}{3}, x წევრის კოეფიციენტი, 2-ზე, \frac{2}{3}-ის მისაღებად. შემდეგ დაამატეთ \frac{2}{3}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{4}{9}
აიყვანეთ კვადრატში \frac{2}{3} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
\left(x+\frac{2}{3}\right)^{2}=\frac{4}{9}
დაშალეთ მამრავლებად x^{2}+\frac{4}{3}x+\frac{4}{9}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{2}{3}=\frac{2}{3} x+\frac{2}{3}=-\frac{2}{3}
გაამარტივეთ.
x=0 x=-\frac{4}{3}
გამოაკელით \frac{2}{3} განტოლების ორივე მხარეს.