ამოხსნა t-ისთვის (complex solution)
\left\{\begin{matrix}t=\frac{x-40}{±\sqrt{p}}\text{, }&±\sqrt{p}\neq 0\\t\in \mathrm{C}\text{, }&x=40\text{ and }±\sqrt{p}=0\end{matrix}\right.
ამოხსნა t-ისთვის
\left\{\begin{matrix}t=\frac{x-40}{±\sqrt{p}}\text{, }&±\sqrt{p}\neq 0\text{ and }p\geq 0\\t\in \mathrm{R}\text{, }&x=40\text{ and }p\geq 0\text{ and }±\sqrt{p}=0\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\left(±\sqrt{p}\right)t=x-40
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
\frac{\left(±\sqrt{p}\right)t}{±\sqrt{p}}=\frac{x-40}{±\sqrt{p}}
ორივე მხარე გაყავით ±\sqrt{p}-ზე.
t=\frac{x-40}{±\sqrt{p}}
±\sqrt{p}-ზე გაყოფა აუქმებს ±\sqrt{p}-ზე გამრავლებას.
\left(±\sqrt{p}\right)t=x-40
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
\frac{\left(±\sqrt{p}\right)t}{±\sqrt{p}}=\frac{x-40}{±\sqrt{p}}
ორივე მხარე გაყავით ±\sqrt{p}-ზე.
t=\frac{x-40}{±\sqrt{p}}
±\sqrt{p}-ზე გაყოფა აუქმებს ±\sqrt{p}-ზე გამრავლებას.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}