ამოხსნა A-ისთვის (complex solution)
\left\{\begin{matrix}A=-\frac{-2x^{2}+Bx-x+C-1}{x^{2}-1}\text{, }&x\neq -1\text{ and }x\neq 1\\A\in \mathrm{C}\text{, }&\left(B=4-C\text{ and }x=1\right)\text{ or }\left(B=C-2\text{ and }x=-1\right)\end{matrix}\right.
ამოხსნა B-ისთვის (complex solution)
\left\{\begin{matrix}B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}\text{, }&x\neq 0\\B\in \mathrm{C}\text{, }&A=C-1\text{ and }x=0\end{matrix}\right.
ამოხსნა A-ისთვის
\left\{\begin{matrix}A=-\frac{-2x^{2}+Bx-x+C-1}{x^{2}-1}\text{, }&|x|\neq 1\\A\in \mathrm{R}\text{, }&\left(B=C-2\text{ and }x=-1\right)\text{ or }\left(B=4-C\text{ and }x=1\right)\end{matrix}\right.
ამოხსნა B-ისთვის
\left\{\begin{matrix}B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}\text{, }&x\neq 0\\B\in \mathrm{R}\text{, }&A=C-1\text{ and }x=0\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x^{2}+A x^{2}-1-ზე.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
გამოაკელით x^{4} ორივე მხარეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
დააჯგუფეთ x^{4} და -x^{4}, რათა მიიღოთ 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
დაამატეთ x^{2} ორივე მხარეს.
Ax^{2}-A+Bx+C=2x^{2}+x+1
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
Ax^{2}-A+C=2x^{2}+x+1-Bx
გამოაკელით Bx ორივე მხარეს.
Ax^{2}-A=2x^{2}+x+1-Bx-C
გამოაკელით C ორივე მხარეს.
\left(x^{2}-1\right)A=2x^{2}+x+1-Bx-C
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: A.
\left(x^{2}-1\right)A=2x^{2}-Bx+x-C+1
განტოლება სტანდარტული ფორმისაა.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
ორივე მხარე გაყავით x^{2}-1-ზე.
A=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
x^{2}-1-ზე გაყოფა აუქმებს x^{2}-1-ზე გამრავლებას.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x^{2}+A x^{2}-1-ზე.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
გამოაკელით x^{4} ორივე მხარეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
დააჯგუფეთ x^{4} და -x^{4}, რათა მიიღოთ 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
დაამატეთ x^{2} ორივე მხარეს.
Ax^{2}-A+Bx+C=2x^{2}+x+1
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
-A+Bx+C=2x^{2}+x+1-Ax^{2}
გამოაკელით Ax^{2} ორივე მხარეს.
Bx+C=2x^{2}+x+1-Ax^{2}+A
დაამატეთ A ორივე მხარეს.
Bx=2x^{2}+x+1-Ax^{2}+A-C
გამოაკელით C ორივე მხარეს.
Bx=-Ax^{2}+2x^{2}+x+A-C+1
გადაალაგეთ წევრები.
xB=1-C+A+x+2x^{2}-Ax^{2}
განტოლება სტანდარტული ფორმისაა.
\frac{xB}{x}=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
ორივე მხარე გაყავით x-ზე.
B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
x-ზე გაყოფა აუქმებს x-ზე გამრავლებას.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x^{2}+A x^{2}-1-ზე.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
გამოაკელით x^{4} ორივე მხარეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
დააჯგუფეთ x^{4} და -x^{4}, რათა მიიღოთ 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
დაამატეთ x^{2} ორივე მხარეს.
Ax^{2}-A+Bx+C=2x^{2}+x+1
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
Ax^{2}-A+C=2x^{2}+x+1-Bx
გამოაკელით Bx ორივე მხარეს.
Ax^{2}-A=2x^{2}+x+1-Bx-C
გამოაკელით C ორივე მხარეს.
\left(x^{2}-1\right)A=2x^{2}+x+1-Bx-C
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: A.
\left(x^{2}-1\right)A=2x^{2}-Bx+x-C+1
განტოლება სტანდარტული ფორმისაა.
\frac{\left(x^{2}-1\right)A}{x^{2}-1}=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
ორივე მხარე გაყავით x^{2}-1-ზე.
A=\frac{2x^{2}-Bx+x-C+1}{x^{2}-1}
x^{2}-1-ზე გაყოფა აუქმებს x^{2}-1-ზე გამრავლებას.
x^{4}+x^{2}+x+1=x^{4}-x^{2}+Ax^{2}-A+Bx+C
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x^{2}+A x^{2}-1-ზე.
x^{4}-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{4}+x^{2}+x+1-x^{4}
გამოაკელით x^{4} ორივე მხარეს.
-x^{2}+Ax^{2}-A+Bx+C=x^{2}+x+1
დააჯგუფეთ x^{4} და -x^{4}, რათა მიიღოთ 0.
Ax^{2}-A+Bx+C=x^{2}+x+1+x^{2}
დაამატეთ x^{2} ორივე მხარეს.
Ax^{2}-A+Bx+C=2x^{2}+x+1
დააჯგუფეთ x^{2} და x^{2}, რათა მიიღოთ 2x^{2}.
-A+Bx+C=2x^{2}+x+1-Ax^{2}
გამოაკელით Ax^{2} ორივე მხარეს.
Bx+C=2x^{2}+x+1-Ax^{2}+A
დაამატეთ A ორივე მხარეს.
Bx=2x^{2}+x+1-Ax^{2}+A-C
გამოაკელით C ორივე მხარეს.
Bx=-Ax^{2}+2x^{2}+x+A-C+1
გადაალაგეთ წევრები.
xB=1-C+A+x+2x^{2}-Ax^{2}
განტოლება სტანდარტული ფორმისაა.
\frac{xB}{x}=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
ორივე მხარე გაყავით x-ზე.
B=\frac{1-C+A+x+2x^{2}-Ax^{2}}{x}
x-ზე გაყოფა აუქმებს x-ზე გამრავლებას.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}