მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\left(x+3\right)\left(x^{2}+2x-3\right)
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-9 და q ყოფს უფროს კოეფიციენტს 1. ერთი ასეთი ფესვი არის -3. დაშალეთ მამრავლებად მრავალწევრი მისი გაყოფით x+3-ზე.
a+b=2 ab=1\left(-3\right)=-3
განვიხილოთ x^{2}+2x-3. მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-3. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=-1 b=3
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x^{2}-x\right)+\left(3x-3\right)
ხელახლა დაწერეთ x^{2}+2x-3, როგორც \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
x-ის პირველ, 3-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-1\right)\left(x+3\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-1 დისტრიბუციული თვისების გამოყენებით.
\left(x-1\right)\left(x+3\right)^{2}
გადაწერეთ სრული მამრავლებად დაშლილი გამოსახულება.