მამრავლი
\left(x-6\right)\left(x+1\right)\left(x+7\right)
შეფასება
\left(x-6\right)\left(x+1\right)\left(x+7\right)
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\left(x+7\right)\left(x^{2}-5x-6\right)
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-42 და q ყოფს უფროს კოეფიციენტს 1. ერთი ასეთი ფესვი არის -7. დაშალეთ მამრავლებად მრავალწევრი მისი გაყოფით x+7-ზე.
a+b=-5 ab=1\left(-6\right)=-6
განვიხილოთ x^{2}-5x-6. მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-6. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-6 2,-3
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -6.
1-6=-5 2-3=-1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=1
ამონახსნი არის წყვილი, რომლის ჯამია -5.
\left(x^{2}-6x\right)+\left(x-6\right)
ხელახლა დაწერეთ x^{2}-5x-6, როგორც \left(x^{2}-6x\right)+\left(x-6\right).
x\left(x-6\right)+x-6
მამრავლებად დაშალეთ x x^{2}-6x-ში.
\left(x-6\right)\left(x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-6 დისტრიბუციული თვისების გამოყენებით.
\left(x-6\right)\left(x+1\right)\left(x+7\right)
გადაწერეთ სრული მამრავლებად დაშლილი გამოსახულება.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}