ამოხსნა x-ისთვის
x=-2
x=9
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
a+b=-7 ab=-18
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}-7x-18 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-18 2,-9 3,-6
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -18.
1-18=-17 2-9=-7 3-6=-3
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-9 b=2
ამონახსნი არის წყვილი, რომლის ჯამია -7.
\left(x-9\right)\left(x+2\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=9 x=-2
განტოლების პასუხების მისაღებად ამოხსენით x-9=0 და x+2=0.
a+b=-7 ab=1\left(-18\right)=-18
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-18. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-18 2,-9 3,-6
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -18.
1-18=-17 2-9=-7 3-6=-3
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-9 b=2
ამონახსნი არის წყვილი, რომლის ჯამია -7.
\left(x^{2}-9x\right)+\left(2x-18\right)
ხელახლა დაწერეთ x^{2}-7x-18, როგორც \left(x^{2}-9x\right)+\left(2x-18\right).
x\left(x-9\right)+2\left(x-9\right)
x-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-9\right)\left(x+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-9 დისტრიბუციული თვისების გამოყენებით.
x=9 x=-2
განტოლების პასუხების მისაღებად ამოხსენით x-9=0 და x+2=0.
x^{2}-7x-18=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-18\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, -7-ით b და -18-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-18\right)}}{2}
აიყვანეთ კვადრატში -7.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2}
გაამრავლეთ -4-ზე -18.
x=\frac{-\left(-7\right)±\sqrt{121}}{2}
მიუმატეთ 49 72-ს.
x=\frac{-\left(-7\right)±11}{2}
აიღეთ 121-ის კვადრატული ფესვი.
x=\frac{7±11}{2}
-7-ის საპირისპიროა 7.
x=\frac{18}{2}
ახლა ამოხსენით განტოლება x=\frac{7±11}{2} როცა ± პლიუსია. მიუმატეთ 7 11-ს.
x=9
გაყავით 18 2-ზე.
x=-\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{7±11}{2} როცა ± მინუსია. გამოაკელით 11 7-ს.
x=-2
გაყავით -4 2-ზე.
x=9 x=-2
განტოლება ახლა ამოხსნილია.
x^{2}-7x-18=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}-7x-18-\left(-18\right)=-\left(-18\right)
მიუმატეთ 18 განტოლების ორივე მხარეს.
x^{2}-7x=-\left(-18\right)
-18-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}-7x=18
გამოაკელით -18 0-ს.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=18+\left(-\frac{7}{2}\right)^{2}
გაყავით -7, x წევრის კოეფიციენტი, 2-ზე, -\frac{7}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{7}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-7x+\frac{49}{4}=18+\frac{49}{4}
აიყვანეთ კვადრატში -\frac{7}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-7x+\frac{49}{4}=\frac{121}{4}
მიუმატეთ 18 \frac{49}{4}-ს.
\left(x-\frac{7}{2}\right)^{2}=\frac{121}{4}
დაშალეთ მამრავლებად x^{2}-7x+\frac{49}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{7}{2}=\frac{11}{2} x-\frac{7}{2}=-\frac{11}{2}
გაამარტივეთ.
x=9 x=-2
მიუმატეთ \frac{7}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}