მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-2 ab=1\left(-8\right)=-8
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-8. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-8 2,-4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -8.
1-8=-7 2-4=-2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-4 b=2
ამონახსნი არის წყვილი, რომლის ჯამია -2.
\left(x^{2}-4x\right)+\left(2x-8\right)
ხელახლა დაწერეთ x^{2}-2x-8, როგორც \left(x^{2}-4x\right)+\left(2x-8\right).
x\left(x-4\right)+2\left(x-4\right)
x-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-4\right)\left(x+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-4 დისტრიბუციული თვისების გამოყენებით.
x^{2}-2x-8=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
აიყვანეთ კვადრატში -2.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
გაამრავლეთ -4-ზე -8.
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
მიუმატეთ 4 32-ს.
x=\frac{-\left(-2\right)±6}{2}
აიღეთ 36-ის კვადრატული ფესვი.
x=\frac{2±6}{2}
-2-ის საპირისპიროა 2.
x=\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{2±6}{2} როცა ± პლიუსია. მიუმატეთ 2 6-ს.
x=4
გაყავით 8 2-ზე.
x=-\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{2±6}{2} როცა ± მინუსია. გამოაკელით 6 2-ს.
x=-2
გაყავით -4 2-ზე.
x^{2}-2x-8=\left(x-4\right)\left(x-\left(-2\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 4 x_{1}-ისთვის და -2 x_{2}-ისთვის.
x^{2}-2x-8=\left(x-4\right)\left(x+2\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.