მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}-2x-4=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-4\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, -2-ით b და -4-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-4\right)}}{2}
აიყვანეთ კვადრატში -2.
x=\frac{-\left(-2\right)±\sqrt{4+16}}{2}
გაამრავლეთ -4-ზე -4.
x=\frac{-\left(-2\right)±\sqrt{20}}{2}
მიუმატეთ 4 16-ს.
x=\frac{-\left(-2\right)±2\sqrt{5}}{2}
აიღეთ 20-ის კვადრატული ფესვი.
x=\frac{2±2\sqrt{5}}{2}
-2-ის საპირისპიროა 2.
x=\frac{2\sqrt{5}+2}{2}
ახლა ამოხსენით განტოლება x=\frac{2±2\sqrt{5}}{2} როცა ± პლიუსია. მიუმატეთ 2 2\sqrt{5}-ს.
x=\sqrt{5}+1
გაყავით 2+2\sqrt{5} 2-ზე.
x=\frac{2-2\sqrt{5}}{2}
ახლა ამოხსენით განტოლება x=\frac{2±2\sqrt{5}}{2} როცა ± მინუსია. გამოაკელით 2\sqrt{5} 2-ს.
x=1-\sqrt{5}
გაყავით 2-2\sqrt{5} 2-ზე.
x=\sqrt{5}+1 x=1-\sqrt{5}
განტოლება ახლა ამოხსნილია.
x^{2}-2x-4=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
მიუმატეთ 4 განტოლების ორივე მხარეს.
x^{2}-2x=-\left(-4\right)
-4-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}-2x=4
გამოაკელით -4 0-ს.
x^{2}-2x+1=4+1
გაყავით -2, x წევრის კოეფიციენტი, 2-ზე, -1-ის მისაღებად. შემდეგ დაამატეთ -1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-2x+1=5
მიუმატეთ 4 1-ს.
\left(x-1\right)^{2}=5
დაშალეთ მამრავლებად x^{2}-2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{5}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-1=\sqrt{5} x-1=-\sqrt{5}
გაამარტივეთ.
x=\sqrt{5}+1 x=1-\sqrt{5}
მიუმატეთ 1 განტოლების ორივე მხარეს.