მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=1 ab=-56
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+x-56 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,56 -2,28 -4,14 -7,8
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-7 b=8
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x-7\right)\left(x+8\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=7 x=-8
განტოლების პასუხების მისაღებად ამოხსენით x-7=0 და x+8=0.
a+b=1 ab=1\left(-56\right)=-56
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-56. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,56 -2,28 -4,14 -7,8
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -56.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-7 b=8
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(x^{2}-7x\right)+\left(8x-56\right)
ხელახლა დაწერეთ x^{2}+x-56, როგორც \left(x^{2}-7x\right)+\left(8x-56\right).
x\left(x-7\right)+8\left(x-7\right)
x-ის პირველ, 8-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-7\right)\left(x+8\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-7 დისტრიბუციული თვისების გამოყენებით.
x=7 x=-8
განტოლების პასუხების მისაღებად ამოხსენით x-7=0 და x+8=0.
x^{2}+x-56=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-1±\sqrt{1^{2}-4\left(-56\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 1-ით b და -56-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-56\right)}}{2}
აიყვანეთ კვადრატში 1.
x=\frac{-1±\sqrt{1+224}}{2}
გაამრავლეთ -4-ზე -56.
x=\frac{-1±\sqrt{225}}{2}
მიუმატეთ 1 224-ს.
x=\frac{-1±15}{2}
აიღეთ 225-ის კვადრატული ფესვი.
x=\frac{14}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±15}{2} როცა ± პლიუსია. მიუმატეთ -1 15-ს.
x=7
გაყავით 14 2-ზე.
x=-\frac{16}{2}
ახლა ამოხსენით განტოლება x=\frac{-1±15}{2} როცა ± მინუსია. გამოაკელით 15 -1-ს.
x=-8
გაყავით -16 2-ზე.
x=7 x=-8
განტოლება ახლა ამოხსნილია.
x^{2}+x-56=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+x-56-\left(-56\right)=-\left(-56\right)
მიუმატეთ 56 განტოლების ორივე მხარეს.
x^{2}+x=-\left(-56\right)
-56-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+x=56
გამოაკელით -56 0-ს.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=56+\left(\frac{1}{2}\right)^{2}
გაყავით 1, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+x+\frac{1}{4}=56+\frac{1}{4}
აიყვანეთ კვადრატში \frac{1}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+x+\frac{1}{4}=\frac{225}{4}
მიუმატეთ 56 \frac{1}{4}-ს.
\left(x+\frac{1}{2}\right)^{2}=\frac{225}{4}
დაშალეთ მამრავლებად x^{2}+x+\frac{1}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{2}=\frac{15}{2} x+\frac{1}{2}=-\frac{15}{2}
გაამარტივეთ.
x=7 x=-8
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.