მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+x-12=0
უტოლობის ამოსახსნელად დაშალეთ მამრავლებად მარცხენა მხარე. კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-12\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 1 b-თვის და -12 c-თვის კვადრატულ ფორმულაში.
x=\frac{-1±7}{2}
შეასრულეთ გამოთვლები.
x=3 x=-4
ამოხსენით განტოლება x=\frac{-1±7}{2}, როცა ± არის პლუსი და როცა ± არის მინუსი.
\left(x-3\right)\left(x+4\right)>0
ხელახლა ჩაწერეთ უტოლობა მიღებული ამონახსნების გამოყენებით.
x-3<0 x+4<0
დადებითი ნამრავლის მისაღებად x-3-ს და x+4-ს ორივეს უნდა ჰქონდეთ დადებითი ან უარყოფითი ნიშნები. განვიხილოთ შემთხვევა, როდესაც x-3 და x+4 ორივე უარყოფითია.
x<-4
ამონახსნი, რომელიც აკმაყოფილებს ორივე უტოლობას, არის x<-4.
x+4>0 x-3>0
განვიხილოთ შემთხვევა, როდესაც x-3 და x+4 ორივე დადებითია.
x>3
ამონახსნი, რომელიც აკმაყოფილებს ორივე უტოლობას, არის x>3.
x<-4\text{; }x>3
საბოლოო ამონახსნი წარმოადგენს მიღებული ამონახსნების გაერთიანებას.