მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=5 ab=-36
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+5x-36 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,36 -2,18 -3,12 -4,9 -6,6
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-4 b=9
ამონახსნი არის წყვილი, რომლის ჯამია 5.
\left(x-4\right)\left(x+9\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=4 x=-9
განტოლების პასუხების მისაღებად ამოხსენით x-4=0 და x+9=0.
a+b=5 ab=1\left(-36\right)=-36
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-36. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,36 -2,18 -3,12 -4,9 -6,6
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-4 b=9
ამონახსნი არის წყვილი, რომლის ჯამია 5.
\left(x^{2}-4x\right)+\left(9x-36\right)
ხელახლა დაწერეთ x^{2}+5x-36, როგორც \left(x^{2}-4x\right)+\left(9x-36\right).
x\left(x-4\right)+9\left(x-4\right)
x-ის პირველ, 9-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-4\right)\left(x+9\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-4 დისტრიბუციული თვისების გამოყენებით.
x=4 x=-9
განტოლების პასუხების მისაღებად ამოხსენით x-4=0 და x+9=0.
x^{2}+5x-36=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-5±\sqrt{5^{2}-4\left(-36\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 5-ით b და -36-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-36\right)}}{2}
აიყვანეთ კვადრატში 5.
x=\frac{-5±\sqrt{25+144}}{2}
გაამრავლეთ -4-ზე -36.
x=\frac{-5±\sqrt{169}}{2}
მიუმატეთ 25 144-ს.
x=\frac{-5±13}{2}
აიღეთ 169-ის კვადრატული ფესვი.
x=\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-5±13}{2} როცა ± პლიუსია. მიუმატეთ -5 13-ს.
x=4
გაყავით 8 2-ზე.
x=-\frac{18}{2}
ახლა ამოხსენით განტოლება x=\frac{-5±13}{2} როცა ± მინუსია. გამოაკელით 13 -5-ს.
x=-9
გაყავით -18 2-ზე.
x=4 x=-9
განტოლება ახლა ამოხსნილია.
x^{2}+5x-36=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+5x-36-\left(-36\right)=-\left(-36\right)
მიუმატეთ 36 განტოლების ორივე მხარეს.
x^{2}+5x=-\left(-36\right)
-36-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+5x=36
გამოაკელით -36 0-ს.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=36+\left(\frac{5}{2}\right)^{2}
გაყავით 5, x წევრის კოეფიციენტი, 2-ზე, \frac{5}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{5}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+5x+\frac{25}{4}=36+\frac{25}{4}
აიყვანეთ კვადრატში \frac{5}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+5x+\frac{25}{4}=\frac{169}{4}
მიუმატეთ 36 \frac{25}{4}-ს.
\left(x+\frac{5}{2}\right)^{2}=\frac{169}{4}
დაშალეთ მამრავლებად x^{2}+5x+\frac{25}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{5}{2}=\frac{13}{2} x+\frac{5}{2}=-\frac{13}{2}
გაამარტივეთ.
x=4 x=-9
გამოაკელით \frac{5}{2} განტოლების ორივე მხარეს.