მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა
ვიქტორინა
Quadratic Equation

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+2x+1=0
დაამატეთ 1 ორივე მხარეს.
a+b=2 ab=1
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+2x+1 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=1 b=1
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x+1\right)\left(x+1\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
\left(x+1\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
x=-1
განტოლების პასუხის მისაღებად ამოხსენით x+1=0.
x^{2}+2x+1=0
დაამატეთ 1 ორივე მხარეს.
a+b=2 ab=1\times 1=1
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx+1. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=1 b=1
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x^{2}+x\right)+\left(x+1\right)
ხელახლა დაწერეთ x^{2}+2x+1, როგორც \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
მამრავლებად დაშალეთ x x^{2}+x-ში.
\left(x+1\right)\left(x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x+1 დისტრიბუციული თვისების გამოყენებით.
\left(x+1\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
x=-1
განტოლების პასუხის მისაღებად ამოხსენით x+1=0.
x^{2}+2x=-1
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x^{2}+2x-\left(-1\right)=-1-\left(-1\right)
მიუმატეთ 1 განტოლების ორივე მხარეს.
x^{2}+2x-\left(-1\right)=0
-1-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x+1=0
გამოაკელით -1 0-ს.
x=\frac{-2±\sqrt{2^{2}-4}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და 1-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{0}}{2}
მიუმატეთ 4 -4-ს.
x=-\frac{2}{2}
აიღეთ 0-ის კვადრატული ფესვი.
x=-1
გაყავით -2 2-ზე.
x^{2}+2x=-1
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+2x+1^{2}=-1+1^{2}
გაყავით 2, x წევრის კოეფიციენტი, 2-ზე, 1-ის მისაღებად. შემდეგ დაამატეთ 1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+2x+1=-1+1
აიყვანეთ კვადრატში 1.
x^{2}+2x+1=0
მიუმატეთ -1 1-ს.
\left(x+1\right)^{2}=0
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=0 x+1=0
გაამარტივეთ.
x=-1 x=-1
გამოაკელით 1 განტოლების ორივე მხარეს.
x=-1
განტოლება ახლა ამოხსნილია. ამონახსბები იგივეა.