მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+2x+5-8=0
გამოაკელით 8 ორივე მხარეს.
x^{2}+2x-3=0
გამოაკელით 8 5-ს -3-ის მისაღებად.
a+b=2 ab=-3
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+2x-3 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=-1 b=3
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x-1\right)\left(x+3\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=1 x=-3
განტოლების პასუხების მისაღებად ამოხსენით x-1=0 და x+3=0.
x^{2}+2x+5-8=0
გამოაკელით 8 ორივე მხარეს.
x^{2}+2x-3=0
გამოაკელით 8 5-ს -3-ის მისაღებად.
a+b=2 ab=1\left(-3\right)=-3
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx-3. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=-1 b=3
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x^{2}-x\right)+\left(3x-3\right)
ხელახლა დაწერეთ x^{2}+2x-3, როგორც \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
x-ის პირველ, 3-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-1\right)\left(x+3\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-1 დისტრიბუციული თვისების გამოყენებით.
x=1 x=-3
განტოლების პასუხების მისაღებად ამოხსენით x-1=0 და x+3=0.
x^{2}+2x+5=8
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x^{2}+2x+5-8=8-8
გამოაკელით 8 განტოლების ორივე მხარეს.
x^{2}+2x+5-8=0
8-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x-3=0
გამოაკელით 8 5-ს.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და -3-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+12}}{2}
გაამრავლეთ -4-ზე -3.
x=\frac{-2±\sqrt{16}}{2}
მიუმატეთ 4 12-ს.
x=\frac{-2±4}{2}
აიღეთ 16-ის კვადრატული ფესვი.
x=\frac{2}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±4}{2} როცა ± პლიუსია. მიუმატეთ -2 4-ს.
x=1
გაყავით 2 2-ზე.
x=-\frac{6}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±4}{2} როცა ± მინუსია. გამოაკელით 4 -2-ს.
x=-3
გაყავით -6 2-ზე.
x=1 x=-3
განტოლება ახლა ამოხსნილია.
x^{2}+2x+5=8
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+2x+5-5=8-5
გამოაკელით 5 განტოლების ორივე მხარეს.
x^{2}+2x=8-5
5-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x=3
გამოაკელით 5 8-ს.
x^{2}+2x+1^{2}=3+1^{2}
გაყავით 2, x წევრის კოეფიციენტი, 2-ზე, 1-ის მისაღებად. შემდეგ დაამატეთ 1-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+2x+1=3+1
აიყვანეთ კვადრატში 1.
x^{2}+2x+1=4
მიუმატეთ 3 1-ს.
\left(x+1\right)^{2}=4
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=2 x+1=-2
გაამარტივეთ.
x=1 x=-3
გამოაკელით 1 განტოლების ორივე მხარეს.