მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის (complex solution)
Tick mark Image
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{2}+2x+1=5
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x^{2}+2x+1-5=5-5
გამოაკელით 5 განტოლების ორივე მხარეს.
x^{2}+2x+1-5=0
5-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x-4=0
გამოაკელით 5 1-ს.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და -4-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+16}}{2}
გაამრავლეთ -4-ზე -4.
x=\frac{-2±\sqrt{20}}{2}
მიუმატეთ 4 16-ს.
x=\frac{-2±2\sqrt{5}}{2}
აიღეთ 20-ის კვადრატული ფესვი.
x=\frac{2\sqrt{5}-2}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±2\sqrt{5}}{2} როცა ± პლიუსია. მიუმატეთ -2 2\sqrt{5}-ს.
x=\sqrt{5}-1
გაყავით -2+2\sqrt{5} 2-ზე.
x=\frac{-2\sqrt{5}-2}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±2\sqrt{5}}{2} როცა ± მინუსია. გამოაკელით 2\sqrt{5} -2-ს.
x=-\sqrt{5}-1
გაყავით -2-2\sqrt{5} 2-ზე.
x=\sqrt{5}-1 x=-\sqrt{5}-1
განტოლება ახლა ამოხსნილია.
\left(x+1\right)^{2}=5
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=\sqrt{5} x+1=-\sqrt{5}
გაამარტივეთ.
x=\sqrt{5}-1 x=-\sqrt{5}-1
გამოაკელით 1 განტოლების ორივე მხარეს.
x^{2}+2x+1=5
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x^{2}+2x+1-5=5-5
გამოაკელით 5 განტოლების ორივე მხარეს.
x^{2}+2x+1-5=0
5-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+2x-4=0
გამოაკელით 5 1-ს.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 2-ით b და -4-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+16}}{2}
გაამრავლეთ -4-ზე -4.
x=\frac{-2±\sqrt{20}}{2}
მიუმატეთ 4 16-ს.
x=\frac{-2±2\sqrt{5}}{2}
აიღეთ 20-ის კვადრატული ფესვი.
x=\frac{2\sqrt{5}-2}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±2\sqrt{5}}{2} როცა ± პლიუსია. მიუმატეთ -2 2\sqrt{5}-ს.
x=\sqrt{5}-1
გაყავით -2+2\sqrt{5} 2-ზე.
x=\frac{-2\sqrt{5}-2}{2}
ახლა ამოხსენით განტოლება x=\frac{-2±2\sqrt{5}}{2} როცა ± მინუსია. გამოაკელით 2\sqrt{5} -2-ს.
x=-\sqrt{5}-1
გაყავით -2-2\sqrt{5} 2-ზე.
x=\sqrt{5}-1 x=-\sqrt{5}-1
განტოლება ახლა ამოხსნილია.
\left(x+1\right)^{2}=5
დაშალეთ მამრავლებად x^{2}+2x+1. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{5}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+1=\sqrt{5} x+1=-\sqrt{5}
გაამარტივეთ.
x=\sqrt{5}-1 x=-\sqrt{5}-1
გამოაკელით 1 განტოლების ორივე მხარეს.