მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=10 ab=1\times 16=16
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx+16. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,16 2,8 4,4
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 16.
1+16=17 2+8=10 4+4=8
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=2 b=8
ამონახსნი არის წყვილი, რომლის ჯამია 10.
\left(x^{2}+2x\right)+\left(8x+16\right)
ხელახლა დაწერეთ x^{2}+10x+16, როგორც \left(x^{2}+2x\right)+\left(8x+16\right).
x\left(x+2\right)+8\left(x+2\right)
x-ის პირველ, 8-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x+2\right)\left(x+8\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x+2 დისტრიბუციული თვისების გამოყენებით.
x^{2}+10x+16=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-10±\sqrt{10^{2}-4\times 16}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-10±\sqrt{100-4\times 16}}{2}
აიყვანეთ კვადრატში 10.
x=\frac{-10±\sqrt{100-64}}{2}
გაამრავლეთ -4-ზე 16.
x=\frac{-10±\sqrt{36}}{2}
მიუმატეთ 100 -64-ს.
x=\frac{-10±6}{2}
აიღეთ 36-ის კვადრატული ფესვი.
x=-\frac{4}{2}
ახლა ამოხსენით განტოლება x=\frac{-10±6}{2} როცა ± პლიუსია. მიუმატეთ -10 6-ს.
x=-2
გაყავით -4 2-ზე.
x=-\frac{16}{2}
ახლა ამოხსენით განტოლება x=\frac{-10±6}{2} როცა ± მინუსია. გამოაკელით 6 -10-ს.
x=-8
გაყავით -16 2-ზე.
x^{2}+10x+16=\left(x-\left(-2\right)\right)\left(x-\left(-8\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -2 x_{1}-ისთვის და -8 x_{2}-ისთვის.
x^{2}+10x+16=\left(x+2\right)\left(x+8\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.