ამოხსნა a-ისთვის (complex solution)
\left\{\begin{matrix}\\a=-\frac{x}{3}\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=4\end{matrix}\right.
ამოხსნა a-ისთვის
\left\{\begin{matrix}\\a=-\frac{x}{3}\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=4\end{matrix}\right.
ამოხსნა x-ისთვის
x=-3a
x=4
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{2}+3ax-4x-12a=0
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 3a-4 x-ზე.
3ax-4x-12a=-x^{2}
გამოაკელით x^{2} ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
3ax-12a=-x^{2}+4x
დაამატეთ 4x ორივე მხარეს.
\left(3x-12\right)a=-x^{2}+4x
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: a.
\left(3x-12\right)a=4x-x^{2}
განტოლება სტანდარტული ფორმისაა.
\frac{\left(3x-12\right)a}{3x-12}=\frac{x\left(4-x\right)}{3x-12}
ორივე მხარე გაყავით 3x-12-ზე.
a=\frac{x\left(4-x\right)}{3x-12}
3x-12-ზე გაყოფა აუქმებს 3x-12-ზე გამრავლებას.
a=-\frac{x}{3}
გაყავით x\left(4-x\right) 3x-12-ზე.
x^{2}+3ax-4x-12a=0
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 3a-4 x-ზე.
3ax-4x-12a=-x^{2}
გამოაკელით x^{2} ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
3ax-12a=-x^{2}+4x
დაამატეთ 4x ორივე მხარეს.
\left(3x-12\right)a=-x^{2}+4x
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: a.
\left(3x-12\right)a=4x-x^{2}
განტოლება სტანდარტული ფორმისაა.
\frac{\left(3x-12\right)a}{3x-12}=\frac{x\left(4-x\right)}{3x-12}
ორივე მხარე გაყავით 3x-12-ზე.
a=\frac{x\left(4-x\right)}{3x-12}
3x-12-ზე გაყოფა აუქმებს 3x-12-ზე გამრავლებას.
a=-\frac{x}{3}
გაყავით x\left(4-x\right) 3x-12-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}