ამოხსნა x, y-ისთვის
x=3
y=1
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x+3y=6,5x-2y=13
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+3y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-3y+6
გამოაკელით 3y განტოლების ორივე მხარეს.
5\left(-3y+6\right)-2y=13
ჩაანაცვლეთ -3y+6-ით x მეორე განტოლებაში, 5x-2y=13.
-15y+30-2y=13
გაამრავლეთ 5-ზე -3y+6.
-17y+30=13
მიუმატეთ -15y -2y-ს.
-17y=-17
გამოაკელით 30 განტოლების ორივე მხარეს.
y=1
ორივე მხარე გაყავით -17-ზე.
x=-3+6
ჩაანაცვლეთ 1-ით y აქ: x=-3y+6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=3
მიუმატეთ 6 -3-ს.
x=3,y=1
სისტემა ახლა ამოხსნილია.
x+3y=6,5x-2y=13
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}1&3\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&3\\5&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\5&-2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3\times 5}&-\frac{3}{-2-3\times 5}\\-\frac{5}{-2-3\times 5}&\frac{1}{-2-3\times 5}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\\frac{5}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 6+\frac{3}{17}\times 13\\\frac{5}{17}\times 6-\frac{1}{17}\times 13\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
x+3y=6,5x-2y=13
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
5x+5\times 3y=5\times 6,5x-2y=13
იმისათვის, რომ x და 5x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 5-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
5x+15y=30,5x-2y=13
გაამარტივეთ.
5x-5x+15y+2y=30-13
გამოაკელით 5x-2y=13 5x+15y=30-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
15y+2y=30-13
მიუმატეთ 5x -5x-ს. პირობები 5x და -5x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
17y=30-13
მიუმატეთ 15y 2y-ს.
17y=17
მიუმატეთ 30 -13-ს.
y=1
ორივე მხარე გაყავით 17-ზე.
5x-2=13
ჩაანაცვლეთ 1-ით y აქ: 5x-2y=13. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
5x=15
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=3
ორივე მხარე გაყავით 5-ზე.
x=3,y=1
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}