მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

xx+4=-5x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+4=-5x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+4+5x=0
დაამატეთ 5x ორივე მხარეს.
x^{2}+5x+4=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=5 ab=4
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+5x+4 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,4 2,2
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 4.
1+4=5 2+2=4
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=1 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 5.
\left(x+1\right)\left(x+4\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=-1 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x+1=0 და x+4=0.
xx+4=-5x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+4=-5x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+4+5x=0
დაამატეთ 5x ორივე მხარეს.
x^{2}+5x+4=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=5 ab=1\times 4=4
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx+4. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,4 2,2
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 4.
1+4=5 2+2=4
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=1 b=4
ამონახსნი არის წყვილი, რომლის ჯამია 5.
\left(x^{2}+x\right)+\left(4x+4\right)
ხელახლა დაწერეთ x^{2}+5x+4, როგორც \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
x-ის პირველ, 4-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x+1\right)\left(x+4\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x+1 დისტრიბუციული თვისების გამოყენებით.
x=-1 x=-4
განტოლების პასუხების მისაღებად ამოხსენით x+1=0 და x+4=0.
xx+4=-5x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+4=-5x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+4+5x=0
დაამატეთ 5x ორივე მხარეს.
x^{2}+5x+4=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 5-ით b და 4-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
აიყვანეთ კვადრატში 5.
x=\frac{-5±\sqrt{25-16}}{2}
გაამრავლეთ -4-ზე 4.
x=\frac{-5±\sqrt{9}}{2}
მიუმატეთ 25 -16-ს.
x=\frac{-5±3}{2}
აიღეთ 9-ის კვადრატული ფესვი.
x=-\frac{2}{2}
ახლა ამოხსენით განტოლება x=\frac{-5±3}{2} როცა ± პლიუსია. მიუმატეთ -5 3-ს.
x=-1
გაყავით -2 2-ზე.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-5±3}{2} როცა ± მინუსია. გამოაკელით 3 -5-ს.
x=-4
გაყავით -8 2-ზე.
x=-1 x=-4
განტოლება ახლა ამოხსნილია.
xx+4=-5x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+4=-5x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+4+5x=0
დაამატეთ 5x ორივე მხარეს.
x^{2}+5x=-4
გამოაკელით 4 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
გაყავით 5, x წევრის კოეფიციენტი, 2-ზე, \frac{5}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{5}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
აიყვანეთ კვადრატში \frac{5}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
მიუმატეთ -4 \frac{25}{4}-ს.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
დაშალეთ მამრავლებად x^{2}+5x+\frac{25}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
გაამარტივეთ.
x=-1 x=-4
გამოაკელით \frac{5}{2} განტოლების ორივე მხარეს.