ამოხსნა x-ისთვის
x=-9
x=-4
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
xx+36=-13x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+36=-13x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+36+13x=0
დაამატეთ 13x ორივე მხარეს.
x^{2}+13x+36=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=13 ab=36
განტოლების ამოსახსნელად მამრავლებად დაშალეთ x^{2}+13x+36 შემდეგი ფორმულის გამოყენებით: x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,36 2,18 3,12 4,9 6,6
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=4 b=9
ამონახსნი არის წყვილი, რომლის ჯამია 13.
\left(x+4\right)\left(x+9\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(x+a\right)\left(x+b\right) მიღებული მნიშვნელობების გამოყენებით.
x=-4 x=-9
განტოლების პასუხების მისაღებად ამოხსენით x+4=0 და x+9=0.
xx+36=-13x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+36=-13x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+36+13x=0
დაამატეთ 13x ორივე მხარეს.
x^{2}+13x+36=0
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=13 ab=1\times 36=36
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც x^{2}+ax+bx+36. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,36 2,18 3,12 4,9 6,6
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=4 b=9
ამონახსნი არის წყვილი, რომლის ჯამია 13.
\left(x^{2}+4x\right)+\left(9x+36\right)
ხელახლა დაწერეთ x^{2}+13x+36, როგორც \left(x^{2}+4x\right)+\left(9x+36\right).
x\left(x+4\right)+9\left(x+4\right)
x-ის პირველ, 9-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x+4\right)\left(x+9\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x+4 დისტრიბუციული თვისების გამოყენებით.
x=-4 x=-9
განტოლების პასუხების მისაღებად ამოხსენით x+4=0 და x+9=0.
xx+36=-13x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+36=-13x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+36+13x=0
დაამატეთ 13x ორივე მხარეს.
x^{2}+13x+36=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-13±\sqrt{13^{2}-4\times 36}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 13-ით b და 36-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 36}}{2}
აიყვანეთ კვადრატში 13.
x=\frac{-13±\sqrt{169-144}}{2}
გაამრავლეთ -4-ზე 36.
x=\frac{-13±\sqrt{25}}{2}
მიუმატეთ 169 -144-ს.
x=\frac{-13±5}{2}
აიღეთ 25-ის კვადრატული ფესვი.
x=-\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{-13±5}{2} როცა ± პლიუსია. მიუმატეთ -13 5-ს.
x=-4
გაყავით -8 2-ზე.
x=-\frac{18}{2}
ახლა ამოხსენით განტოლება x=\frac{-13±5}{2} როცა ± მინუსია. გამოაკელით 5 -13-ს.
x=-9
გაყავით -18 2-ზე.
x=-4 x=-9
განტოლება ახლა ამოხსნილია.
xx+36=-13x
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x-ზე.
x^{2}+36=-13x
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
x^{2}+36+13x=0
დაამატეთ 13x ორივე მხარეს.
x^{2}+13x=-36
გამოაკელით 36 ორივე მხარეს. ნულს გამოკლებული ნებისმიერი რიცხვი უდრის ამავე უარყოფით რიცხვს.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-36+\left(\frac{13}{2}\right)^{2}
გაყავით 13, x წევრის კოეფიციენტი, 2-ზე, \frac{13}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{13}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+13x+\frac{169}{4}=-36+\frac{169}{4}
აიყვანეთ კვადრატში \frac{13}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+13x+\frac{169}{4}=\frac{25}{4}
მიუმატეთ -36 \frac{169}{4}-ს.
\left(x+\frac{13}{2}\right)^{2}=\frac{25}{4}
დაშალეთ მამრავლებად x^{2}+13x+\frac{169}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{13}{2}=\frac{5}{2} x+\frac{13}{2}=-\frac{5}{2}
გაამარტივეთ.
x=-4 x=-9
გამოაკელით \frac{13}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}