მთავარ კონტენტზე გადასვლა
ამოხსნა t-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

±6,±3,±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს6 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
t=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
t^{2}+t-6=0
ბეზუს თეორემის მიხედვით, t-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით t^{3}-7t+6 t-1-ზე t^{2}+t-6-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-6\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 1 b-თვის და -6 c-თვის კვადრატულ ფორმულაში.
t=\frac{-1±5}{2}
შეასრულეთ გამოთვლები.
t=-3 t=2
ამოხსენით განტოლება t^{2}+t-6=0, როცა ± არის პლუსი და როცა ± არის მინუსი.
t=1 t=-3 t=2
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.