მთავარ კონტენტზე გადასვლა
ამოხსნა t-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

±2,±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-2 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
t=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
t^{2}+t+2=0
ბეზუს თეორემის მიხედვით, t-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით t^{3}+t-2 t-1-ზე t^{2}+t+2-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
t=\frac{-1±\sqrt{1^{2}-4\times 1\times 2}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, 1 b-თვის და 2 c-თვის კვადრატულ ფორმულაში.
t=\frac{-1±\sqrt{-7}}{2}
შეასრულეთ გამოთვლები.
t\in \emptyset
ვინაიდან უარყოფითი რიცხვის კვადრატული ფესვი არ არის განსაზღვრული რეალურ ველში, ამონახსნი არ არსებობს.
t=1
ჩამოთვალეთ ყველა ნაპოვნი ამოხსნა.