მთავარ კონტენტზე გადასვლა
ამოხსნა p-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

p^{2}-4p=12
გამოაკელით 4p ორივე მხარეს.
p^{2}-4p-12=0
გამოაკელით 12 ორივე მხარეს.
a+b=-4 ab=-12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ p^{2}-4p-12 შემდეგი ფორმულის გამოყენებით: p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-12 2,-6 3,-4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -12.
1-12=-11 2-6=-4 3-4=-1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=2
ამონახსნი არის წყვილი, რომლის ჯამია -4.
\left(p-6\right)\left(p+2\right)
გადაწერეთ მამრავლებად დაშლილი ლოგიკური ფრაზა \left(p+a\right)\left(p+b\right) მიღებული მნიშვნელობების გამოყენებით.
p=6 p=-2
განტოლების პასუხების მისაღებად ამოხსენით p-6=0 და p+2=0.
p^{2}-4p=12
გამოაკელით 4p ორივე მხარეს.
p^{2}-4p-12=0
გამოაკელით 12 ორივე მხარეს.
a+b=-4 ab=1\left(-12\right)=-12
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც p^{2}+ap+bp-12. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-12 2,-6 3,-4
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -12.
1-12=-11 2-6=-4 3-4=-1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-6 b=2
ამონახსნი არის წყვილი, რომლის ჯამია -4.
\left(p^{2}-6p\right)+\left(2p-12\right)
ხელახლა დაწერეთ p^{2}-4p-12, როგორც \left(p^{2}-6p\right)+\left(2p-12\right).
p\left(p-6\right)+2\left(p-6\right)
p-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(p-6\right)\left(p+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი p-6 დისტრიბუციული თვისების გამოყენებით.
p=6 p=-2
განტოლების პასუხების მისაღებად ამოხსენით p-6=0 და p+2=0.
p^{2}-4p=12
გამოაკელით 4p ორივე მხარეს.
p^{2}-4p-12=0
გამოაკელით 12 ორივე მხარეს.
p=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, -4-ით b და -12-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
აიყვანეთ კვადრატში -4.
p=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
გაამრავლეთ -4-ზე -12.
p=\frac{-\left(-4\right)±\sqrt{64}}{2}
მიუმატეთ 16 48-ს.
p=\frac{-\left(-4\right)±8}{2}
აიღეთ 64-ის კვადრატული ფესვი.
p=\frac{4±8}{2}
-4-ის საპირისპიროა 4.
p=\frac{12}{2}
ახლა ამოხსენით განტოლება p=\frac{4±8}{2} როცა ± პლიუსია. მიუმატეთ 4 8-ს.
p=6
გაყავით 12 2-ზე.
p=-\frac{4}{2}
ახლა ამოხსენით განტოლება p=\frac{4±8}{2} როცა ± მინუსია. გამოაკელით 8 4-ს.
p=-2
გაყავით -4 2-ზე.
p=6 p=-2
განტოლება ახლა ამოხსნილია.
p^{2}-4p=12
გამოაკელით 4p ორივე მხარეს.
p^{2}-4p+\left(-2\right)^{2}=12+\left(-2\right)^{2}
გაყავით -4, x წევრის კოეფიციენტი, 2-ზე, -2-ის მისაღებად. შემდეგ დაამატეთ -2-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
p^{2}-4p+4=12+4
აიყვანეთ კვადრატში -2.
p^{2}-4p+4=16
მიუმატეთ 12 4-ს.
\left(p-2\right)^{2}=16
დაშალეთ მამრავლებად p^{2}-4p+4. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-2\right)^{2}}=\sqrt{16}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
p-2=4 p-2=-4
გაამარტივეთ.
p=6 p=-2
მიუმატეთ 2 განტოლების ორივე მხარეს.