ამოხსნა n-ისთვის
n=\frac{\sqrt{679}}{28}\approx 0.930629587
n=-\frac{\sqrt{679}}{28}\approx -0.930629587
გაზიარება
კოპირებულია ბუფერში
n^{2}-8-113n^{2}=-105
გამოაკელით 113n^{2} ორივე მხარეს.
-112n^{2}-8=-105
დააჯგუფეთ n^{2} და -113n^{2}, რათა მიიღოთ -112n^{2}.
-112n^{2}=-105+8
დაამატეთ 8 ორივე მხარეს.
-112n^{2}=-97
შეკრიბეთ -105 და 8, რათა მიიღოთ -97.
n^{2}=\frac{-97}{-112}
ორივე მხარე გაყავით -112-ზე.
n^{2}=\frac{97}{112}
წილადი \frac{-97}{-112} შეიძლება გამარტივდეს როგორც \frac{97}{112} მრიცხველიდან და მნიშვნელიდან უარყოფითი ნიშნის მოცილებით.
n=\frac{\sqrt{679}}{28} n=-\frac{\sqrt{679}}{28}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
n^{2}-8-113n^{2}=-105
გამოაკელით 113n^{2} ორივე მხარეს.
-112n^{2}-8=-105
დააჯგუფეთ n^{2} და -113n^{2}, რათა მიიღოთ -112n^{2}.
-112n^{2}-8+105=0
დაამატეთ 105 ორივე მხარეს.
-112n^{2}+97=0
შეკრიბეთ -8 და 105, რათა მიიღოთ 97.
n=\frac{0±\sqrt{0^{2}-4\left(-112\right)\times 97}}{2\left(-112\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -112-ით a, 0-ით b და 97-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-112\right)\times 97}}{2\left(-112\right)}
აიყვანეთ კვადრატში 0.
n=\frac{0±\sqrt{448\times 97}}{2\left(-112\right)}
გაამრავლეთ -4-ზე -112.
n=\frac{0±\sqrt{43456}}{2\left(-112\right)}
გაამრავლეთ 448-ზე 97.
n=\frac{0±8\sqrt{679}}{2\left(-112\right)}
აიღეთ 43456-ის კვადრატული ფესვი.
n=\frac{0±8\sqrt{679}}{-224}
გაამრავლეთ 2-ზე -112.
n=-\frac{\sqrt{679}}{28}
ახლა ამოხსენით განტოლება n=\frac{0±8\sqrt{679}}{-224} როცა ± პლიუსია.
n=\frac{\sqrt{679}}{28}
ახლა ამოხსენით განტოლება n=\frac{0±8\sqrt{679}}{-224} როცა ± მინუსია.
n=-\frac{\sqrt{679}}{28} n=\frac{\sqrt{679}}{28}
განტოლება ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}