შეფასება
-\frac{2nx^{6}}{y}
დაშლა
-\frac{2nx^{6}}{y}
ვიქტორინა
Algebra
n : \frac { ( - x ^ { 2 } y ^ { 0 } ) ^ { - 3 } } { ( - 2 x ) ( - x y ) ^ { - 1 } }
გაზიარება
კოპირებულია ბუფერში
\frac{n\left(-2\right)x\left(\left(-x\right)y\right)^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
გაყავით n \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}}-ზე n-ის გამრავლებით \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}}-ის შექცეულ სიდიდეზე.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
დაშალეთ \left(\left(-x\right)y\right)^{-1}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)\times 1\right)^{-3}}
გამოთვალეთ0-ის y ხარისხი და მიიღეთ 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1^{-3}}
დაშალეთ \left(\left(-x^{2}\right)\times 1\right)^{-3}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1}
გამოთვალეთ-3-ის 1 ხარისხი და მიიღეთ 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
გააბათილეთ 1 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{n\left(-2\right)x\left(-1\right)^{-1}x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
დაშალეთ \left(-x\right)^{-1}.
\frac{n\left(-2\right)x\left(-1\right)x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
გამოთვალეთ-1-ის -1 ხარისხი და მიიღეთ -1.
\frac{n\times 2xx^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
გადაამრავლეთ -2 და -1, რათა მიიღოთ 2.
\frac{n\times 2y^{-1}}{\left(-x^{2}\right)^{-3}}
გადაამრავლეთ x და x^{-1}, რათა მიიღოთ 1.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}\left(x^{2}\right)^{-3}}
დაშალეთ \left(-x^{2}\right)^{-3}.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}x^{-6}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -3 რომ მიიღოთ -6.
\frac{n\times 2y^{-1}}{-x^{-6}}
გამოთვალეთ-3-ის -1 ხარისხი და მიიღეთ -1.
\frac{n\left(-2\right)y^{-1}}{x^{-6}}
გააბათილეთ -1 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{n\left(-2\right)x\left(\left(-x\right)y\right)^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
გაყავით n \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}}-ზე n-ის გამრავლებით \frac{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}{-2x\left(\left(-x\right)y\right)^{-1}}-ის შექცეულ სიდიდეზე.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)y^{0}\right)^{-3}}
დაშალეთ \left(\left(-x\right)y\right)^{-1}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(\left(-x^{2}\right)\times 1\right)^{-3}}
გამოთვალეთ0-ის y ხარისხი და მიიღეთ 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1^{-3}}
დაშალეთ \left(\left(-x^{2}\right)\times 1\right)^{-3}.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}\times 1}
გამოთვალეთ-3-ის 1 ხარისხი და მიიღეთ 1.
\frac{n\left(-2\right)x\left(-x\right)^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
გააბათილეთ 1 როგორც მრიცხველში, ასევე მნიშვნელში.
\frac{n\left(-2\right)x\left(-1\right)^{-1}x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
დაშალეთ \left(-x\right)^{-1}.
\frac{n\left(-2\right)x\left(-1\right)x^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
გამოთვალეთ-1-ის -1 ხარისხი და მიიღეთ -1.
\frac{n\times 2xx^{-1}y^{-1}}{\left(-x^{2}\right)^{-3}}
გადაამრავლეთ -2 და -1, რათა მიიღოთ 2.
\frac{n\times 2y^{-1}}{\left(-x^{2}\right)^{-3}}
გადაამრავლეთ x და x^{-1}, რათა მიიღოთ 1.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}\left(x^{2}\right)^{-3}}
დაშალეთ \left(-x^{2}\right)^{-3}.
\frac{n\times 2y^{-1}}{\left(-1\right)^{-3}x^{-6}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები. გადაამრავლეთ 2 და -3 რომ მიიღოთ -6.
\frac{n\times 2y^{-1}}{-x^{-6}}
გამოთვალეთ-3-ის -1 ხარისხი და მიიღეთ -1.
\frac{n\left(-2\right)y^{-1}}{x^{-6}}
გააბათილეთ -1 როგორც მრიცხველში, ასევე მნიშვნელში.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}