ამოხსნა m-ისთვის (complex solution)
\left\{\begin{matrix}m=\frac{3}{x}\text{, }&x\neq 0\\m\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
ამოხსნა m-ისთვის
\left\{\begin{matrix}m=\frac{3}{x}\text{, }&x\neq 0\\m\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
ამოხსნა x-ისთვის
\left\{\begin{matrix}\\x=-1\text{, }&\text{unconditionally}\\x=\frac{3}{m}\text{, }&m\neq 0\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
mx^{2}+mx-3x-3=0
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ m-3 x-ზე.
mx^{2}+mx-3=3x
დაამატეთ 3x ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
mx^{2}+mx=3x+3
დაამატეთ 3 ორივე მხარეს.
\left(x^{2}+x\right)m=3x+3
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: m.
\frac{\left(x^{2}+x\right)m}{x^{2}+x}=\frac{3x+3}{x^{2}+x}
ორივე მხარე გაყავით x^{2}+x-ზე.
m=\frac{3x+3}{x^{2}+x}
x^{2}+x-ზე გაყოფა აუქმებს x^{2}+x-ზე გამრავლებას.
m=\frac{3}{x}
გაყავით 3+3x x^{2}+x-ზე.
mx^{2}+mx-3x-3=0
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ m-3 x-ზე.
mx^{2}+mx-3=3x
დაამატეთ 3x ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
mx^{2}+mx=3x+3
დაამატეთ 3 ორივე მხარეს.
\left(x^{2}+x\right)m=3x+3
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: m.
\frac{\left(x^{2}+x\right)m}{x^{2}+x}=\frac{3x+3}{x^{2}+x}
ორივე მხარე გაყავით x^{2}+x-ზე.
m=\frac{3x+3}{x^{2}+x}
x^{2}+x-ზე გაყოფა აუქმებს x^{2}+x-ზე გამრავლებას.
m=\frac{3}{x}
გაყავით 3+3x x^{2}+x-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}