ამოხსნა m-ისთვის
m=-\frac{4-x}{x\left(x+7\right)}
x\neq -7\text{ and }x\neq 0\text{ and }x\neq 2
ამოხსნა x-ისთვის
\left\{\begin{matrix}x=\frac{-\sqrt{49m^{2}-30m+1}-7m+1}{2m}\text{, }&\left(m\neq -\frac{1}{9}\text{ and }m\neq 0\text{ and }m\leq \frac{15-4\sqrt{11}}{49}\right)\text{ or }m\geq \frac{4\sqrt{11}+15}{49}\\x=\frac{\sqrt{49m^{2}-30m+1}-7m+1}{2m}\text{, }&\left(m\neq 0\text{ and }m\leq \frac{15-4\sqrt{11}}{49}\right)\text{ or }m\geq \frac{4\sqrt{11}+15}{49}\\x=4\text{, }&m=0\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
mx\left(x-2\right)\left(x+7\right)=x^{2}-6x+8
განტოლების ორივე მხარე გაამრავლეთ \left(x-2\right)\left(x+7\right)-ზე.
\left(mx^{2}-2mx\right)\left(x+7\right)=x^{2}-6x+8
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ mx x-2-ზე.
mx^{3}+5mx^{2}-14mx=x^{2}-6x+8
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ mx^{2}-2mx x+7-ზე და დააჯგუფეთ მსგავსი წევრები.
\left(x^{3}+5x^{2}-14x\right)m=x^{2}-6x+8
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: m.
\frac{\left(x^{3}+5x^{2}-14x\right)m}{x^{3}+5x^{2}-14x}=\frac{\left(x-4\right)\left(x-2\right)}{x^{3}+5x^{2}-14x}
ორივე მხარე გაყავით x^{3}+5x^{2}-14x-ზე.
m=\frac{\left(x-4\right)\left(x-2\right)}{x^{3}+5x^{2}-14x}
x^{3}+5x^{2}-14x-ზე გაყოფა აუქმებს x^{3}+5x^{2}-14x-ზე გამრავლებას.
m=\frac{x-4}{x\left(x+7\right)}
გაყავით \left(-4+x\right)\left(-2+x\right) x^{3}+5x^{2}-14x-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}