შეფასება
\left(\frac{m-1}{m}\right)^{2}\left(m^{2}+1\right)
მამრავლი
\frac{\left(m-1\right)^{2}\left(m^{2}+1\right)}{m^{2}}
ვიქტორინა
Polynomial
5 მსგავსი პრობლემები:
m ^ { 2 } + \frac { 1 } { m ^ { 2 } } + 2 - 2 m - \frac { 2 } { m }
გაზიარება
კოპირებულია ბუფერში
\frac{\left(m^{2}+2-2m\right)m^{2}}{m^{2}}+\frac{1}{m^{2}}-\frac{2}{m}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. გაამრავლეთ m^{2}+2-2m-ზე \frac{m^{2}}{m^{2}}.
\frac{\left(m^{2}+2-2m\right)m^{2}+1}{m^{2}}-\frac{2}{m}
რადგან \frac{\left(m^{2}+2-2m\right)m^{2}}{m^{2}}-სა და \frac{1}{m^{2}}-ს აქვს იგივე მნიშვნელი, შეკრიბეთ მათი მრიცხველები.
\frac{m^{4}+2m^{2}-2m^{3}+1}{m^{2}}-\frac{2}{m}
შეასრულეთ გამრავლება \left(m^{2}+2-2m\right)m^{2}+1-ში.
\frac{m^{4}+2m^{2}-2m^{3}+1}{m^{2}}-\frac{2m}{m^{2}}
გამოსახულებების მიმატებისთვის ან გამოკლებისთვის, დაშალეთ ისინი, რათა გახადოთ მათი მნიშვნელი ერთნაირი. m^{2}-ისა და m-ის უმცირესი საერთო მამრავლი არის m^{2}. გაამრავლეთ \frac{2}{m}-ზე \frac{m}{m}.
\frac{m^{4}+2m^{2}-2m^{3}+1-2m}{m^{2}}
რადგან \frac{m^{4}+2m^{2}-2m^{3}+1}{m^{2}}-სა და \frac{2m}{m^{2}}-ს აქვს იგივე მნიშვნელი, გამოაკელით მათი მრიცხველები.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}