ამოხსნა f-ისთვის (complex solution)
f=-\frac{x\left(1-2x\right)}{x^{2}-2}
x\neq -\sqrt{2}\text{ and }x\neq \sqrt{2}\text{ and }x\neq 0
ამოხსნა f-ისთვის
f=-\frac{x\left(1-2x\right)}{x^{2}-2}
|x|\neq \sqrt{2}\text{ and }x\neq 0
ამოხსნა x-ისთვის (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{8f^{2}-16f+1}+1}{2\left(f-2\right)}\text{, }&f\neq 2\\x=\frac{\sqrt{8f^{2}-16f+1}-1}{2\left(f-2\right)}\text{, }&f\neq 0\text{ and }f\neq 2\\x=4\text{, }&f=2\end{matrix}\right.
ამოხსნა x-ისთვის
\left\{\begin{matrix}x=-\frac{\sqrt{8f^{2}-16f+1}+1}{2\left(f-2\right)}\text{, }&f\leq -\frac{\sqrt{14}}{4}+1\text{ or }\left(f\neq 2\text{ and }f\geq \frac{\sqrt{14}}{4}+1\right)\\x=\frac{\sqrt{8f^{2}-16f+1}-1}{2\left(f-2\right)}\text{, }&\left(f\neq 0\text{ and }f\leq -\frac{\sqrt{14}}{4}+1\right)\text{ or }\left(f\neq 2\text{ and }f\geq \frac{\sqrt{14}}{4}+1\right)\\x=4\text{, }&f=2\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
fxx-2f\times 1=2xx+x\left(-1\right)
განტოლების ორივე მხარე გაამრავლეთ x-ზე.
fx^{2}-2f\times 1=2xx+x\left(-1\right)
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
fx^{2}-2f\times 1=2x^{2}+x\left(-1\right)
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
fx^{2}-2f=2x^{2}+x\left(-1\right)
გადაამრავლეთ 2 და 1, რათა მიიღოთ 2.
\left(x^{2}-2\right)f=2x^{2}+x\left(-1\right)
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: f.
\left(x^{2}-2\right)f=2x^{2}-x
განტოლება სტანდარტული ფორმისაა.
\frac{\left(x^{2}-2\right)f}{x^{2}-2}=\frac{x\left(2x-1\right)}{x^{2}-2}
ორივე მხარე გაყავით x^{2}-2-ზე.
f=\frac{x\left(2x-1\right)}{x^{2}-2}
x^{2}-2-ზე გაყოფა აუქმებს x^{2}-2-ზე გამრავლებას.
fxx-2f\times 1=2xx+x\left(-1\right)
განტოლების ორივე მხარე გაამრავლეთ x-ზე.
fx^{2}-2f\times 1=2xx+x\left(-1\right)
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
fx^{2}-2f\times 1=2x^{2}+x\left(-1\right)
გადაამრავლეთ x და x, რათა მიიღოთ x^{2}.
fx^{2}-2f=2x^{2}+x\left(-1\right)
გადაამრავლეთ 2 და 1, რათა მიიღოთ 2.
\left(x^{2}-2\right)f=2x^{2}+x\left(-1\right)
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: f.
\left(x^{2}-2\right)f=2x^{2}-x
განტოლება სტანდარტული ფორმისაა.
\frac{\left(x^{2}-2\right)f}{x^{2}-2}=\frac{x\left(2x-1\right)}{x^{2}-2}
ორივე მხარე გაყავით x^{2}-2-ზე.
f=\frac{x\left(2x-1\right)}{x^{2}-2}
x^{2}-2-ზე გაყოფა აუქმებს x^{2}-2-ზე გამრავლებას.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}