ამოხსნა f-ისთვის (complex solution)
\left\{\begin{matrix}f=-\frac{-x^{2}+12x-38}{y}\text{, }&y\neq 0\\f\in \mathrm{C}\text{, }&\left(x=6+\sqrt{2}i\text{ or }x=-\sqrt{2}i+6\right)\text{ and }y=0\end{matrix}\right.
ამოხსნა f-ისთვის
f=-\frac{-x^{2}+12x-38}{y}
y\neq 0
ამოხსნა x-ისთვის (complex solution)
x=-\sqrt{fy-2}+6
x=\sqrt{fy-2}+6
ამოხსნა x-ისთვის
\left\{\begin{matrix}x=-\sqrt{fy-2}+6\text{; }x=\sqrt{fy-2}+6\text{, }&\left(y<0\text{ and }f\leq \frac{2}{y}\right)\text{ or }\left(y>0\text{ and }f\geq \frac{2}{y}\right)\\x=6\text{, }&f=\frac{2}{y}\text{ and }y\neq 0\end{matrix}\right.
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
fy=x^{2}-12x+36+2
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-6\right)^{2}-ის გასაშლელად.
fy=x^{2}-12x+38
შეკრიბეთ 36 და 2, რათა მიიღოთ 38.
yf=x^{2}-12x+38
განტოლება სტანდარტული ფორმისაა.
\frac{yf}{y}=\frac{x^{2}-12x+38}{y}
ორივე მხარე გაყავით y-ზე.
f=\frac{x^{2}-12x+38}{y}
y-ზე გაყოფა აუქმებს y-ზე გამრავლებას.
fy=x^{2}-12x+36+2
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} ბინომიალური თეორემის გამოყენება \left(x-6\right)^{2}-ის გასაშლელად.
fy=x^{2}-12x+38
შეკრიბეთ 36 და 2, რათა მიიღოთ 38.
yf=x^{2}-12x+38
განტოლება სტანდარტული ფორმისაა.
\frac{yf}{y}=\frac{x^{2}-12x+38}{y}
ორივე მხარე გაყავით y-ზე.
f=\frac{x^{2}-12x+38}{y}
y-ზე გაყოფა აუქმებს y-ზე გამრავლებას.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}