მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-x^{2}+2x+3
გადაალაგეთ პოლინომები სტანდარტულ ფორმაში მოსაყვანად. განალაგეთ წევრები უდიდესიდან უმცირეს ხარისხამდე.
a+b=2 ab=-3=-3
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც -x^{2}+ax+bx+3. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=3 b=-1
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(-x^{2}+3x\right)+\left(-x+3\right)
ხელახლა დაწერეთ -x^{2}+2x+3, როგორც \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
-x-ის პირველ, -1-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-3\right)\left(-x-1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-3 დისტრიბუციული თვისების გამოყენებით.
-x^{2}+2x+3=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
გაამრავლეთ -4-ზე -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
გაამრავლეთ 4-ზე 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
მიუმატეთ 4 12-ს.
x=\frac{-2±4}{2\left(-1\right)}
აიღეთ 16-ის კვადრატული ფესვი.
x=\frac{-2±4}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{2}{-2}
ახლა ამოხსენით განტოლება x=\frac{-2±4}{-2} როცა ± პლიუსია. მიუმატეთ -2 4-ს.
x=-1
გაყავით 2 -2-ზე.
x=-\frac{6}{-2}
ახლა ამოხსენით განტოლება x=\frac{-2±4}{-2} როცა ± მინუსია. გამოაკელით 4 -2-ს.
x=3
გაყავით -6 -2-ზე.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -1 x_{1}-ისთვის და 3 x_{2}-ისთვის.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.