მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\left(2x+5\right)\left(x^{3}+3x^{2}-4\right)
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-20 და q ყოფს უფროს კოეფიციენტს 2. ერთი ასეთი ფესვი არის -\frac{5}{2}. დაშალეთ მამრავლებად მრავალწევრი მისი გაყოფით 2x+5-ზე.
\left(x+2\right)\left(x^{2}+x-2\right)
განვიხილოთ x^{3}+3x^{2}-4. რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-4 და q ყოფს უფროს კოეფიციენტს 1. ერთი ასეთი ფესვი არის -2. დაშალეთ მამრავლებად მრავალწევრი მისი გაყოფით x+2-ზე.
a+b=1 ab=1\left(-2\right)=-2
განვიხილოთ x^{2}+x-2. მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx-2. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=-1 b=2
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(x^{2}-x\right)+\left(2x-2\right)
ხელახლა დაწერეთ x^{2}+x-2, როგორც \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
x-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-1\right)\left(x+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-1 დისტრიბუციული თვისების გამოყენებით.
\left(x-1\right)\left(2x+5\right)\left(x+2\right)^{2}
გადაწერეთ სრული მამრავლებად დაშლილი გამოსახულება.