მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-5 ab=2\times 3=6
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 2x^{2}+ax+bx+3. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-6 -2,-3
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 6.
-1-6=-7 -2-3=-5
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-3 b=-2
ამონახსნი არის წყვილი, რომლის ჯამია -5.
\left(2x^{2}-3x\right)+\left(-2x+3\right)
ხელახლა დაწერეთ 2x^{2}-5x+3, როგორც \left(2x^{2}-3x\right)+\left(-2x+3\right).
x\left(2x-3\right)-\left(2x-3\right)
x-ის პირველ, -1-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(2x-3\right)\left(x-1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x-3 დისტრიბუციული თვისების გამოყენებით.
2x^{2}-5x+3=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 3}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 3}}{2\times 2}
აიყვანეთ კვადრატში -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\times 3}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-\left(-5\right)±\sqrt{25-24}}{2\times 2}
გაამრავლეთ -8-ზე 3.
x=\frac{-\left(-5\right)±\sqrt{1}}{2\times 2}
მიუმატეთ 25 -24-ს.
x=\frac{-\left(-5\right)±1}{2\times 2}
აიღეთ 1-ის კვადრატული ფესვი.
x=\frac{5±1}{2\times 2}
-5-ის საპირისპიროა 5.
x=\frac{5±1}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{6}{4}
ახლა ამოხსენით განტოლება x=\frac{5±1}{4} როცა ± პლიუსია. მიუმატეთ 5 1-ს.
x=\frac{3}{2}
შეამცირეთ წილადი \frac{6}{4} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=\frac{4}{4}
ახლა ამოხსენით განტოლება x=\frac{5±1}{4} როცა ± მინუსია. გამოაკელით 1 5-ს.
x=1
გაყავით 4 4-ზე.
2x^{2}-5x+3=2\left(x-\frac{3}{2}\right)\left(x-1\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით \frac{3}{2} x_{1}-ისთვის და 1 x_{2}-ისთვის.
2x^{2}-5x+3=2\times \frac{2x-3}{2}\left(x-1\right)
გამოაკელით x \frac{3}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების გამოკლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
2x^{2}-5x+3=\left(2x-3\right)\left(x-1\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 2 2 და 2.