მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=3 ab=2\left(-5\right)=-10
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 2x^{2}+ax+bx-5. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,10 -2,5
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -10.
-1+10=9 -2+5=3
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=5
ამონახსნი არის წყვილი, რომლის ჯამია 3.
\left(2x^{2}-2x\right)+\left(5x-5\right)
ხელახლა დაწერეთ 2x^{2}+3x-5, როგორც \left(2x^{2}-2x\right)+\left(5x-5\right).
2x\left(x-1\right)+5\left(x-1\right)
2x-ის პირველ, 5-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-1\right)\left(2x+5\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-1 დისტრიბუციული თვისების გამოყენებით.
2x^{2}+3x-5=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
აიყვანეთ კვადრატში 3.
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-3±\sqrt{9+40}}{2\times 2}
გაამრავლეთ -8-ზე -5.
x=\frac{-3±\sqrt{49}}{2\times 2}
მიუმატეთ 9 40-ს.
x=\frac{-3±7}{2\times 2}
აიღეთ 49-ის კვადრატული ფესვი.
x=\frac{-3±7}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{4}{4}
ახლა ამოხსენით განტოლება x=\frac{-3±7}{4} როცა ± პლიუსია. მიუმატეთ -3 7-ს.
x=1
გაყავით 4 4-ზე.
x=-\frac{10}{4}
ახლა ამოხსენით განტოლება x=\frac{-3±7}{4} როცა ± მინუსია. გამოაკელით 7 -3-ს.
x=-\frac{5}{2}
შეამცირეთ წილადი \frac{-10}{4} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
2x^{2}+3x-5=2\left(x-1\right)\left(x-\left(-\frac{5}{2}\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 1 x_{1}-ისთვის და -\frac{5}{2} x_{2}-ისთვის.
2x^{2}+3x-5=2\left(x-1\right)\left(x+\frac{5}{2}\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.
2x^{2}+3x-5=2\left(x-1\right)\times \frac{2x+5}{2}
მიუმატეთ \frac{5}{2} x-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
2x^{2}+3x-5=\left(x-1\right)\left(2x+5\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 2 2 და 2.