ამოხსნა f-ისთვის
f=-\frac{3x}{2}+\frac{1}{x^{4}}
x\neq 0
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
fx\times 2x^{3}=2-3x^{5}
განტოლების ორივე მხარე გაამრავლეთ 2x^{3}-ზე.
fx^{4}\times 2=2-3x^{5}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 1 და 3 რომ მიიღოთ 4.
2x^{4}f=2-3x^{5}
განტოლება სტანდარტული ფორმისაა.
\frac{2x^{4}f}{2x^{4}}=\frac{2-3x^{5}}{2x^{4}}
ორივე მხარე გაყავით 2x^{4}-ზე.
f=\frac{2-3x^{5}}{2x^{4}}
2x^{4}-ზე გაყოფა აუქმებს 2x^{4}-ზე გამრავლებას.
f=-\frac{3x}{2}+\frac{1}{x^{4}}
გაყავით 2-3x^{5} 2x^{4}-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}