მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=6 ab=1\times 5=5
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც c^{2}+ac+bc+5. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=1 b=5
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(c^{2}+c\right)+\left(5c+5\right)
ხელახლა დაწერეთ c^{2}+6c+5, როგორც \left(c^{2}+c\right)+\left(5c+5\right).
c\left(c+1\right)+5\left(c+1\right)
c-ის პირველ, 5-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(c+1\right)\left(c+5\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი c+1 დისტრიბუციული თვისების გამოყენებით.
c^{2}+6c+5=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
c=\frac{-6±\sqrt{6^{2}-4\times 5}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
c=\frac{-6±\sqrt{36-4\times 5}}{2}
აიყვანეთ კვადრატში 6.
c=\frac{-6±\sqrt{36-20}}{2}
გაამრავლეთ -4-ზე 5.
c=\frac{-6±\sqrt{16}}{2}
მიუმატეთ 36 -20-ს.
c=\frac{-6±4}{2}
აიღეთ 16-ის კვადრატული ფესვი.
c=-\frac{2}{2}
ახლა ამოხსენით განტოლება c=\frac{-6±4}{2} როცა ± პლიუსია. მიუმატეთ -6 4-ს.
c=-1
გაყავით -2 2-ზე.
c=-\frac{10}{2}
ახლა ამოხსენით განტოლება c=\frac{-6±4}{2} როცა ± მინუსია. გამოაკელით 4 -6-ს.
c=-5
გაყავით -10 2-ზე.
c^{2}+6c+5=\left(c-\left(-1\right)\right)\left(c-\left(-5\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -1 x_{1}-ისთვის და -5 x_{2}-ისთვის.
c^{2}+6c+5=\left(c+1\right)\left(c+5\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.