მამრავლი
\left(b-3\right)^{2}
შეფასება
\left(b-3\right)^{2}
გაზიარება
კოპირებულია ბუფერში
p+q=-6 pq=1\times 9=9
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც b^{2}+pb+qb+9. p-ისა და q-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-9 -3,-3
რადგან pq დადებითია, p-სა და q-ს ერთნაირი ნიშნები აქვთ. რადგან p+q უარყოფითია, ორივე, p და q უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 9.
-1-9=-10 -3-3=-6
გამოთვალეთ თითოეული დაწყვილების ჯამი.
p=-3 q=-3
ამონახსნი არის წყვილი, რომლის ჯამია -6.
\left(b^{2}-3b\right)+\left(-3b+9\right)
ხელახლა დაწერეთ b^{2}-6b+9, როგორც \left(b^{2}-3b\right)+\left(-3b+9\right).
b\left(b-3\right)-3\left(b-3\right)
b-ის პირველ, -3-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(b-3\right)\left(b-3\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი b-3 დისტრიბუციული თვისების გამოყენებით.
\left(b-3\right)^{2}
გადაწერეთ ბინომის კვადრატის სახით.
factor(b^{2}-6b+9)
ამ ტრინომს აქვს ტრინომის კვადრატის ფორმა, რომელიც, შესაძლოა, გამრავლებულია საერთო მამრავლზე. ტრინომის კვადრატების დაშლა მამრავლებად შესაძლებელია პირველი და ბოლო წევრის კვადრატული ფესვების გამოთვლის გზით.
\sqrt{9}=3
გამოთვალეთ ბოლო წევრის კვადრატული ფესვი, 9.
\left(b-3\right)^{2}
ტრინომის კვადრატი არის ბინომის კვადრატი, რომელიც წარმოადგენს პირველი და ბოლო წევრის კვადრატული ფესვების ჯამს ან სხვაობას, ნიშნით, რომელსაც განსაზღვრავს ტრინომის კვადრატის შუა წევრის ნიშანი.
b^{2}-6b+9=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
b=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
b=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
აიყვანეთ კვადრატში -6.
b=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
გაამრავლეთ -4-ზე 9.
b=\frac{-\left(-6\right)±\sqrt{0}}{2}
მიუმატეთ 36 -36-ს.
b=\frac{-\left(-6\right)±0}{2}
აიღეთ 0-ის კვადრატული ფესვი.
b=\frac{6±0}{2}
-6-ის საპირისპიროა 6.
b^{2}-6b+9=\left(b-3\right)\left(b-3\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 3 x_{1}-ისთვის და 3 x_{2}-ისთვის.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}