ამოხსნა a-ისთვის
\left\{\begin{matrix}a=-\frac{b+c-25}{bc+1}\text{, }&c=0\text{ or }b\neq -\frac{1}{c}\\a\in \mathrm{R}\text{, }&\left(b=\frac{\sqrt{629}+25}{2}\text{ and }c=\frac{25-\sqrt{629}}{2}\right)\text{ or }\left(b=\frac{25-\sqrt{629}}{2}\text{ and }c=\frac{\sqrt{629}+25}{2}\right)\end{matrix}\right.
ამოხსნა b-ისთვის
\left\{\begin{matrix}b=-\frac{a+c-25}{ac+1}\text{, }&c=0\text{ or }a\neq -\frac{1}{c}\\b\in \mathrm{R}\text{, }&\left(a=\frac{\sqrt{629}+25}{2}\text{ and }c=\frac{25-\sqrt{629}}{2}\right)\text{ or }\left(a=\frac{25-\sqrt{629}}{2}\text{ and }c=\frac{\sqrt{629}+25}{2}\right)\end{matrix}\right.
გაზიარება
კოპირებულია ბუფერში
a+c+abc=25-b
გამოაკელით b ორივე მხარეს.
a+abc=25-b-c
გამოაკელით c ორივე მხარეს.
\left(1+bc\right)a=25-b-c
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: a.
\left(bc+1\right)a=25-c-b
განტოლება სტანდარტული ფორმისაა.
\frac{\left(bc+1\right)a}{bc+1}=\frac{25-c-b}{bc+1}
ორივე მხარე გაყავით 1+bc-ზე.
a=\frac{25-c-b}{bc+1}
1+bc-ზე გაყოფა აუქმებს 1+bc-ზე გამრავლებას.
b+c+abc=25-a
გამოაკელით a ორივე მხარეს.
b+abc=25-a-c
გამოაკელით c ორივე მხარეს.
\left(1+ac\right)b=25-a-c
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: b.
\left(ac+1\right)b=25-c-a
განტოლება სტანდარტული ფორმისაა.
\frac{\left(ac+1\right)b}{ac+1}=\frac{25-c-a}{ac+1}
ორივე მხარე გაყავით 1+ac-ზე.
b=\frac{25-c-a}{ac+1}
1+ac-ზე გაყოფა აუქმებს 1+ac-ზე გამრავლებას.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}