ამოხსნა a_1-ისთვის
a_{1}=\frac{10}{a^{3}+a}
a\neq 0
ამოხსნა a-ისთვის
a=\sqrt[3]{\frac{1}{9a_{1}|a_{1}|}}\left(\sqrt[3]{a_{1}\sqrt{3\left(a_{1}^{2}+675\right)}+45|a_{1}|}+\sqrt[3]{-a_{1}\sqrt{3\left(a_{1}^{2}+675\right)}+45|a_{1}|}\right)
გაზიარება
კოპირებულია ბუფერში
\left(a+a^{3}\right)a_{1}=10
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: a_{1}.
\left(a^{3}+a\right)a_{1}=10
განტოლება სტანდარტული ფორმისაა.
\frac{\left(a^{3}+a\right)a_{1}}{a^{3}+a}=\frac{10}{a^{3}+a}
ორივე მხარე გაყავით a+a^{3}-ზე.
a_{1}=\frac{10}{a^{3}+a}
a+a^{3}-ზე გაყოფა აუქმებს a+a^{3}-ზე გამრავლებას.
a_{1}=\frac{10}{a\left(a^{2}+1\right)}
გაყავით 10 a+a^{3}-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}