ამოხსნა P-ისთვის
\left\{\begin{matrix}P=\frac{U}{R}\text{, }&U\neq 0\text{ and }R\neq 0\\P\neq 0\text{, }&R=0\text{ and }U=0\end{matrix}\right.
ამოხსნა R-ისთვის
R=\frac{U}{P}
P\neq 0
გაზიარება
კოპირებულია ბუფერში
RP=U
ცვლადი P არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ P-ზე.
\frac{RP}{R}=\frac{U}{R}
ორივე მხარე გაყავით R-ზე.
P=\frac{U}{R}
R-ზე გაყოფა აუქმებს R-ზე გამრავლებას.
P=\frac{U}{R}\text{, }P\neq 0
ცვლადი P არ შეიძლება იყოს 0-ის ტოლი.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}