მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

9x-x^{2}=0
გამოაკელით x^{2} ორივე მხარეს.
x\left(9-x\right)=0
ფრჩხილებს გარეთ გაიტანეთ x.
x=0 x=9
განტოლების პასუხების მისაღებად ამოხსენით x=0 და 9-x=0.
9x-x^{2}=0
გამოაკელით x^{2} ორივე მხარეს.
-x^{2}+9x=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-9±\sqrt{9^{2}}}{2\left(-1\right)}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ -1-ით a, 9-ით b და 0-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±9}{2\left(-1\right)}
აიღეთ 9^{2}-ის კვადრატული ფესვი.
x=\frac{-9±9}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{0}{-2}
ახლა ამოხსენით განტოლება x=\frac{-9±9}{-2} როცა ± პლიუსია. მიუმატეთ -9 9-ს.
x=0
გაყავით 0 -2-ზე.
x=-\frac{18}{-2}
ახლა ამოხსენით განტოლება x=\frac{-9±9}{-2} როცა ± მინუსია. გამოაკელით 9 -9-ს.
x=9
გაყავით -18 -2-ზე.
x=0 x=9
განტოლება ახლა ამოხსნილია.
9x-x^{2}=0
გამოაკელით x^{2} ორივე მხარეს.
-x^{2}+9x=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{-x^{2}+9x}{-1}=\frac{0}{-1}
ორივე მხარე გაყავით -1-ზე.
x^{2}+\frac{9}{-1}x=\frac{0}{-1}
-1-ზე გაყოფა აუქმებს -1-ზე გამრავლებას.
x^{2}-9x=\frac{0}{-1}
გაყავით 9 -1-ზე.
x^{2}-9x=0
გაყავით 0 -1-ზე.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=\left(-\frac{9}{2}\right)^{2}
გაყავით -9, x წევრის კოეფიციენტი, 2-ზე, -\frac{9}{2}-ის მისაღებად. შემდეგ დაამატეთ -\frac{9}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-9x+\frac{81}{4}=\frac{81}{4}
აიყვანეთ კვადრატში -\frac{9}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
\left(x-\frac{9}{2}\right)^{2}=\frac{81}{4}
დაშალეთ მამრავლებად x^{2}-9x+\frac{81}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{9}{2}=\frac{9}{2} x-\frac{9}{2}=-\frac{9}{2}
გაამარტივეთ.
x=9 x=0
მიუმატეთ \frac{9}{2} განტოლების ორივე მხარეს.