მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

8x^{2}+8x-1=0
უტოლობის ამოსახსნელად დაშალეთ მამრავლებად მარცხენა მხარე. კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-1\right)}}{2\times 8}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 8 a-თვის, 8 b-თვის და -1 c-თვის კვადრატულ ფორმულაში.
x=\frac{-8±4\sqrt{6}}{16}
შეასრულეთ გამოთვლები.
x=\frac{\sqrt{6}}{4}-\frac{1}{2} x=-\frac{\sqrt{6}}{4}-\frac{1}{2}
ამოხსენით განტოლება x=\frac{-8±4\sqrt{6}}{16}, როცა ± არის პლუსი და როცა ± არის მინუსი.
8\left(x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\leq 0
ხელახლა ჩაწერეთ უტოლობა მიღებული ამონახსნების გამოყენებით.
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
≤0 ნამრავლის მისაღებად x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)-დან და x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)-დან ერთ-ერთი მნიშვნელობა უნდა იყოს ≥0 და მეორე უნდა იყოს≤0. გაითვალისწინეთ შემთხვევა, როცა x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 და x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0.
x\in \emptyset
ეს არის მცდარი ნებისმიერი x-თვის.
x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
გაითვალისწინეთ შემთხვევა, როცა x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 და x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0.
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
ამონახსნი, რომელიც აკმაყოფილებს ორივე უტოლობას, არის x\in \left[-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\right].
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
საბოლოო ამონახსნი წარმოადგენს მიღებული ამონახსნების გაერთიანებას.