ამოხსნა x-ისთვის
x = \frac{\log_{\frac{200}{179}} {(\frac{910}{71})}}{3} \approx 7.664679935
ამოხსნა x-ისთვის (complex solution)
x=\frac{i\times 2\pi n_{1}}{3\ln(0.895)}+\frac{\log_{0.895}\left(\frac{71}{910}\right)}{3}
n_{1}\in \mathrm{Z}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
\frac{71}{910}=0.895^{3x}
ორივე მხარე გაყავით 910-ზე.
0.895^{3x}=\frac{71}{910}
შეუცვალეთ ადგილები ისე, რომ ყველა ცვლადი წევრები მარცხენა მხარეს აღმოჩნდეს.
\log(0.895^{3x})=\log(\frac{71}{910})
აიღეთ განტოლების ორივე მხარის ლაგორითმი.
3x\log(0.895)=\log(\frac{71}{910})
ხარისხში აყვანილი რიცხვის ლაგორითმი არის რიცხვის ლაგორითმი, გამრავლებული ხარისხზე.
3x=\frac{\log(\frac{71}{910})}{\log(0.895)}
ორივე მხარე გაყავით \log(0.895)-ზე.
3x=\log_{0.895}\left(\frac{71}{910}\right)
ფუძის შეცვლის ფორმულით \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{71}{910})}{3\ln(\frac{179}{200})}
ორივე მხარე გაყავით 3-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}