მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\left(x+3\right)\left(-x^{2}+3x-2\right)
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-6 და q ყოფს უფროს კოეფიციენტს -1. ერთი ასეთი ფესვი არის -3. დაშალეთ მამრავლებად მრავალწევრი მისი გაყოფით x+3-ზე.
a+b=3 ab=-\left(-2\right)=2
განვიხილოთ -x^{2}+3x-2. მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც -x^{2}+ax+bx-2. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=2 b=1
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b დადებითია, ორივე, a და b დადებითია. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(-x^{2}+2x\right)+\left(x-2\right)
ხელახლა დაწერეთ -x^{2}+3x-2, როგორც \left(-x^{2}+2x\right)+\left(x-2\right).
-x\left(x-2\right)+x-2
მამრავლებად დაშალეთ -x -x^{2}+2x-ში.
\left(x-2\right)\left(-x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-2 დისტრიბუციული თვისების გამოყენებით.
\left(x-2\right)\left(-x+1\right)\left(x+3\right)
გადაწერეთ სრული მამრავლებად დაშლილი გამოსახულება.