მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-5 ab=6\left(-6\right)=-36
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 6x^{2}+ax+bx-6. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-36 2,-18 3,-12 4,-9 6,-6
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-9 b=4
ამონახსნი არის წყვილი, რომლის ჯამია -5.
\left(6x^{2}-9x\right)+\left(4x-6\right)
ხელახლა დაწერეთ 6x^{2}-5x-6, როგორც \left(6x^{2}-9x\right)+\left(4x-6\right).
3x\left(2x-3\right)+2\left(2x-3\right)
3x-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(2x-3\right)\left(3x+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 2x-3 დისტრიბუციული თვისების გამოყენებით.
x=\frac{3}{2} x=-\frac{2}{3}
განტოლების პასუხების მისაღებად ამოხსენით 2x-3=0 და 3x+2=0.
6x^{2}-5x-6=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 6-ით a, -5-ით b და -6-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
აიყვანეთ კვადრატში -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
გაამრავლეთ -4-ზე 6.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
გაამრავლეთ -24-ზე -6.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
მიუმატეთ 25 144-ს.
x=\frac{-\left(-5\right)±13}{2\times 6}
აიღეთ 169-ის კვადრატული ფესვი.
x=\frac{5±13}{2\times 6}
-5-ის საპირისპიროა 5.
x=\frac{5±13}{12}
გაამრავლეთ 2-ზე 6.
x=\frac{18}{12}
ახლა ამოხსენით განტოლება x=\frac{5±13}{12} როცა ± პლიუსია. მიუმატეთ 5 13-ს.
x=\frac{3}{2}
შეამცირეთ წილადი \frac{18}{12} უმცირეს წევრებამდე გამოკლებით და 6-ის შეკვეცით.
x=-\frac{8}{12}
ახლა ამოხსენით განტოლება x=\frac{5±13}{12} როცა ± მინუსია. გამოაკელით 13 5-ს.
x=-\frac{2}{3}
შეამცირეთ წილადი \frac{-8}{12} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
x=\frac{3}{2} x=-\frac{2}{3}
განტოლება ახლა ამოხსნილია.
6x^{2}-5x-6=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
6x^{2}-5x-6-\left(-6\right)=-\left(-6\right)
მიუმატეთ 6 განტოლების ორივე მხარეს.
6x^{2}-5x=-\left(-6\right)
-6-იდან იმავე რიცხვის გამოკლების შედეგია 0.
6x^{2}-5x=6
გამოაკელით -6 0-ს.
\frac{6x^{2}-5x}{6}=\frac{6}{6}
ორივე მხარე გაყავით 6-ზე.
x^{2}-\frac{5}{6}x=\frac{6}{6}
6-ზე გაყოფა აუქმებს 6-ზე გამრავლებას.
x^{2}-\frac{5}{6}x=1
გაყავით 6 6-ზე.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=1+\left(-\frac{5}{12}\right)^{2}
გაყავით -\frac{5}{6}, x წევრის კოეფიციენტი, 2-ზე, -\frac{5}{12}-ის მისაღებად. შემდეგ დაამატეთ -\frac{5}{12}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
აიყვანეთ კვადრატში -\frac{5}{12} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
მიუმატეთ 1 \frac{25}{144}-ს.
\left(x-\frac{5}{12}\right)^{2}=\frac{169}{144}
დაშალეთ მამრავლებად x^{2}-\frac{5}{6}x+\frac{25}{144}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{5}{12}=\frac{13}{12} x-\frac{5}{12}=-\frac{13}{12}
გაამარტივეთ.
x=\frac{3}{2} x=-\frac{2}{3}
მიუმატეთ \frac{5}{12} განტოლების ორივე მხარეს.