ამოხსნა x-ისთვის
x=-1
x=\frac{2}{3}\approx 0.666666667
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
3x^{2}+x-2=0
ორივე მხარე გაყავით 2-ზე.
a+b=1 ab=3\left(-2\right)=-6
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 3x^{2}+ax+bx-2. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,6 -2,3
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b დადებითია, დადებით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე უარყოფით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -6.
-1+6=5 -2+3=1
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-2 b=3
ამონახსნი არის წყვილი, რომლის ჯამია 1.
\left(3x^{2}-2x\right)+\left(3x-2\right)
ხელახლა დაწერეთ 3x^{2}+x-2, როგორც \left(3x^{2}-2x\right)+\left(3x-2\right).
x\left(3x-2\right)+3x-2
მამრავლებად დაშალეთ x 3x^{2}-2x-ში.
\left(3x-2\right)\left(x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი 3x-2 დისტრიბუციული თვისების გამოყენებით.
x=\frac{2}{3} x=-1
განტოლების პასუხების მისაღებად ამოხსენით 3x-2=0 და x+1=0.
6x^{2}+2x-4=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-2±\sqrt{2^{2}-4\times 6\left(-4\right)}}{2\times 6}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 6-ით a, 2-ით b და -4-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
აიყვანეთ კვადრატში 2.
x=\frac{-2±\sqrt{4-24\left(-4\right)}}{2\times 6}
გაამრავლეთ -4-ზე 6.
x=\frac{-2±\sqrt{4+96}}{2\times 6}
გაამრავლეთ -24-ზე -4.
x=\frac{-2±\sqrt{100}}{2\times 6}
მიუმატეთ 4 96-ს.
x=\frac{-2±10}{2\times 6}
აიღეთ 100-ის კვადრატული ფესვი.
x=\frac{-2±10}{12}
გაამრავლეთ 2-ზე 6.
x=\frac{8}{12}
ახლა ამოხსენით განტოლება x=\frac{-2±10}{12} როცა ± პლიუსია. მიუმატეთ -2 10-ს.
x=\frac{2}{3}
შეამცირეთ წილადი \frac{8}{12} უმცირეს წევრებამდე გამოკლებით და 4-ის შეკვეცით.
x=-\frac{12}{12}
ახლა ამოხსენით განტოლება x=\frac{-2±10}{12} როცა ± მინუსია. გამოაკელით 10 -2-ს.
x=-1
გაყავით -12 12-ზე.
x=\frac{2}{3} x=-1
განტოლება ახლა ამოხსნილია.
6x^{2}+2x-4=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
6x^{2}+2x-4-\left(-4\right)=-\left(-4\right)
მიუმატეთ 4 განტოლების ორივე მხარეს.
6x^{2}+2x=-\left(-4\right)
-4-იდან იმავე რიცხვის გამოკლების შედეგია 0.
6x^{2}+2x=4
გამოაკელით -4 0-ს.
\frac{6x^{2}+2x}{6}=\frac{4}{6}
ორივე მხარე გაყავით 6-ზე.
x^{2}+\frac{2}{6}x=\frac{4}{6}
6-ზე გაყოფა აუქმებს 6-ზე გამრავლებას.
x^{2}+\frac{1}{3}x=\frac{4}{6}
შეამცირეთ წილადი \frac{2}{6} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x^{2}+\frac{1}{3}x=\frac{2}{3}
შეამცირეთ წილადი \frac{4}{6} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(\frac{1}{6}\right)^{2}
გაყავით \frac{1}{3}, x წევრის კოეფიციენტი, 2-ზე, \frac{1}{6}-ის მისაღებად. შემდეგ დაამატეთ \frac{1}{6}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
აიყვანეთ კვადრატში \frac{1}{6} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
მიუმატეთ \frac{2}{3} \frac{1}{36}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x+\frac{1}{6}\right)^{2}=\frac{25}{36}
დაშალეთ მამრავლებად x^{2}+\frac{1}{3}x+\frac{1}{36}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{1}{6}=\frac{5}{6} x+\frac{1}{6}=-\frac{5}{6}
გაამარტივეთ.
x=\frac{2}{3} x=-1
გამოაკელით \frac{1}{6} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}