მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა
ვიქტორინა
Polynomial

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-8 ab=5\times 3=15
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 5x^{2}+ax+bx+3. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-15 -3,-5
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 15.
-1-15=-16 -3-5=-8
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-5 b=-3
ამონახსნი არის წყვილი, რომლის ჯამია -8.
\left(5x^{2}-5x\right)+\left(-3x+3\right)
ხელახლა დაწერეთ 5x^{2}-8x+3, როგორც \left(5x^{2}-5x\right)+\left(-3x+3\right).
5x\left(x-1\right)-3\left(x-1\right)
5x-ის პირველ, -3-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-1\right)\left(5x-3\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-1 დისტრიბუციული თვისების გამოყენებით.
x=1 x=\frac{3}{5}
განტოლების პასუხების მისაღებად ამოხსენით x-1=0 და 5x-3=0.
5x^{2}-8x+3=0
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 5\times 3}}{2\times 5}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 5-ით a, -8-ით b და 3-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 5\times 3}}{2\times 5}
აიყვანეთ კვადრატში -8.
x=\frac{-\left(-8\right)±\sqrt{64-20\times 3}}{2\times 5}
გაამრავლეთ -4-ზე 5.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2\times 5}
გაამრავლეთ -20-ზე 3.
x=\frac{-\left(-8\right)±\sqrt{4}}{2\times 5}
მიუმატეთ 64 -60-ს.
x=\frac{-\left(-8\right)±2}{2\times 5}
აიღეთ 4-ის კვადრატული ფესვი.
x=\frac{8±2}{2\times 5}
-8-ის საპირისპიროა 8.
x=\frac{8±2}{10}
გაამრავლეთ 2-ზე 5.
x=\frac{10}{10}
ახლა ამოხსენით განტოლება x=\frac{8±2}{10} როცა ± პლიუსია. მიუმატეთ 8 2-ს.
x=1
გაყავით 10 10-ზე.
x=\frac{6}{10}
ახლა ამოხსენით განტოლება x=\frac{8±2}{10} როცა ± მინუსია. გამოაკელით 2 8-ს.
x=\frac{3}{5}
შეამცირეთ წილადი \frac{6}{10} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=1 x=\frac{3}{5}
განტოლება ახლა ამოხსნილია.
5x^{2}-8x+3=0
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
5x^{2}-8x+3-3=-3
გამოაკელით 3 განტოლების ორივე მხარეს.
5x^{2}-8x=-3
3-იდან იმავე რიცხვის გამოკლების შედეგია 0.
\frac{5x^{2}-8x}{5}=-\frac{3}{5}
ორივე მხარე გაყავით 5-ზე.
x^{2}-\frac{8}{5}x=-\frac{3}{5}
5-ზე გაყოფა აუქმებს 5-ზე გამრავლებას.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{3}{5}+\left(-\frac{4}{5}\right)^{2}
გაყავით -\frac{8}{5}, x წევრის კოეფიციენტი, 2-ზე, -\frac{4}{5}-ის მისაღებად. შემდეგ დაამატეთ -\frac{4}{5}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{3}{5}+\frac{16}{25}
აიყვანეთ კვადრატში -\frac{4}{5} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{1}{25}
მიუმატეთ -\frac{3}{5} \frac{16}{25}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x-\frac{4}{5}\right)^{2}=\frac{1}{25}
დაშალეთ მამრავლებად x^{2}-\frac{8}{5}x+\frac{16}{25}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{\frac{1}{25}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{4}{5}=\frac{1}{5} x-\frac{4}{5}=-\frac{1}{5}
გაამარტივეთ.
x=1 x=\frac{3}{5}
მიუმატეთ \frac{4}{5} განტოლების ორივე მხარეს.