ამოხსნა x-ისთვის
x = -\frac{8}{5} = -1\frac{3}{5} = -1.6
x=3
დიაგრამა
ვიქტორინა
Polynomial
5 x ^ { 2 } - 7 x = 24
გაზიარება
კოპირებულია ბუფერში
5x^{2}-7x-24=0
გამოაკელით 24 ორივე მხარეს.
a+b=-7 ab=5\left(-24\right)=-120
განტოლების ამოსახსნელად მამრავლებად დაშალეთ მარცხენა ნაწილი დაჯგუფებით. ჯერ მარცხენა ნაწილი უნდა გადაიწეროს, როგორც 5x^{2}+ax+bx-24. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-15 b=8
ამონახსნი არის წყვილი, რომლის ჯამია -7.
\left(5x^{2}-15x\right)+\left(8x-24\right)
ხელახლა დაწერეთ 5x^{2}-7x-24, როგორც \left(5x^{2}-15x\right)+\left(8x-24\right).
5x\left(x-3\right)+8\left(x-3\right)
5x-ის პირველ, 8-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-3\right)\left(5x+8\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-3 დისტრიბუციული თვისების გამოყენებით.
x=3 x=-\frac{8}{5}
განტოლების პასუხების მისაღებად ამოხსენით x-3=0 და 5x+8=0.
5x^{2}-7x=24
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
5x^{2}-7x-24=24-24
გამოაკელით 24 განტოლების ორივე მხარეს.
5x^{2}-7x-24=0
24-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\left(-24\right)}}{2\times 5}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 5-ით a, -7-ით b და -24-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\left(-24\right)}}{2\times 5}
აიყვანეთ კვადრატში -7.
x=\frac{-\left(-7\right)±\sqrt{49-20\left(-24\right)}}{2\times 5}
გაამრავლეთ -4-ზე 5.
x=\frac{-\left(-7\right)±\sqrt{49+480}}{2\times 5}
გაამრავლეთ -20-ზე -24.
x=\frac{-\left(-7\right)±\sqrt{529}}{2\times 5}
მიუმატეთ 49 480-ს.
x=\frac{-\left(-7\right)±23}{2\times 5}
აიღეთ 529-ის კვადრატული ფესვი.
x=\frac{7±23}{2\times 5}
-7-ის საპირისპიროა 7.
x=\frac{7±23}{10}
გაამრავლეთ 2-ზე 5.
x=\frac{30}{10}
ახლა ამოხსენით განტოლება x=\frac{7±23}{10} როცა ± პლიუსია. მიუმატეთ 7 23-ს.
x=3
გაყავით 30 10-ზე.
x=-\frac{16}{10}
ახლა ამოხსენით განტოლება x=\frac{7±23}{10} როცა ± მინუსია. გამოაკელით 23 7-ს.
x=-\frac{8}{5}
შეამცირეთ წილადი \frac{-16}{10} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
x=3 x=-\frac{8}{5}
განტოლება ახლა ამოხსნილია.
5x^{2}-7x=24
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
\frac{5x^{2}-7x}{5}=\frac{24}{5}
ორივე მხარე გაყავით 5-ზე.
x^{2}-\frac{7}{5}x=\frac{24}{5}
5-ზე გაყოფა აუქმებს 5-ზე გამრავლებას.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{24}{5}+\left(-\frac{7}{10}\right)^{2}
გაყავით -\frac{7}{5}, x წევრის კოეფიციენტი, 2-ზე, -\frac{7}{10}-ის მისაღებად. შემდეგ დაამატეთ -\frac{7}{10}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{24}{5}+\frac{49}{100}
აიყვანეთ კვადრატში -\frac{7}{10} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{529}{100}
მიუმატეთ \frac{24}{5} \frac{49}{100}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
\left(x-\frac{7}{10}\right)^{2}=\frac{529}{100}
დაშალეთ მამრავლებად x^{2}-\frac{7}{5}x+\frac{49}{100}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{529}{100}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x-\frac{7}{10}=\frac{23}{10} x-\frac{7}{10}=-\frac{23}{10}
გაამარტივეთ.
x=3 x=-\frac{8}{5}
მიუმატეთ \frac{7}{10} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}